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1.0 Introduction

This analysis report presents the methods, data, and results of calculations done in support of
Culebra head and hydraulic gradient monitoring network design and optimization. Three
different and largely independent approaches to monitoring network design are examined. These
approaches include optimal locations for additional monitoring wells and identification of wells
in the current monitoring network that could be removed with minimal effect on meeting the
monitoring objectives. The three different sets of results are then combined into a final set of
maps indicating potential areas for the installation of new monitoring wells. Additionally,
several wells in the existing network could be removed with minimal effect on the ability of the
monitoring network to predict heads at unmonitored locations and to detect changes in the
hydraulic gradient. The three approaches used here are similar to approaches used in the 2004
ground water monitoring network design calculations, and this allows for direct comparison of
some results with those obtained five years ago.

1.1. Background

The Waste Isolation Pilot Plant (WIPP) is located in southeastern New Mexico and has been
developed by the U.S. Department of Energy (DOE) for the geologic (deep underground)
disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the
U.S. Environmental Protection Agency (EPA) according to the regulations set forth at Title 40 of
the Code of Federal Regulations, Parts 191 and 194. The DOE demonstrates compliance with
the containment requirements in the regulations by means of a performance assessment (PA),
which estimates releases from the repository for the regulatory period of 10,000 years after
closure.

Groundwater monitoring and modeling activities at the WIPP are an integral part of the DOE’s
broader requirements to demonstrate that WIPP operations are performed in a manner that
ensures protection of the environment, the health and safety of workers and the public, proper
characterization of the disposal system, and compliance of the WIPP with applicable regulations.
Continued compliance with regulations must be demonstrated every five years during the
operational phase of the WIPP. The monitoring requirements apply not only for the current
operational phase (~35 years), but extend through the post-closure phase of the facility to meet
applicable regulations. Because of these long-term requirements, DOE’s Carlsbad Field Office
(CBFO) has developed the WIPP Groundwater Protection Program Plan (DOE, 2009) that
describes: relevant regulatory (EPA and New Mexico Environment Department) drivers; the
current groundwater-monitoring network and how it has evolved over time; current groundwater
program elements; strategies for maintaining compliance; methods for implementing the
strategies; and roles and responsibilities of monitoring program participants.

This analysis report is a revision of McKenna (2004), which identified wells that could be
removed from the existing network as well as looked at potential locations to expand the
monitoring network. Since 2004, the number of monitoring wells available for analysis have
increased by 40%, from 30 to 42. Now after the SNL-series fiberglass-cased wells have been
constructed, this report is re-evaluating the well network based on the new information obtained
from these new wells and the updated Culebra PA flow model, completed for the compliance
recertification application (CRA) 2009 performance assessment baseline calculation (PABC).
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1.2. Purpose

The purpose of these calculations is primarily to determine which of the remaining steel-cased
wells can be plugged and abandoned (P&Aed) without degrading the monitoring network. A
secondary goal is to identify optimal locations for any new Culebra monitoring wells. The
calculations herein will be focused on meeting the goals of:

1. The monitoring network must allow the determination of the direction and rate of
groundwater flow across the WIPP site. This is both an NMED and an EPA requirement
(NMAC, 2000 incorporating 40 CFR Part 194 §264.98(e) (U.S. EPA, 1996));

2. The monitoring network must provide data needed to infer causes of changes in water levels
that might be observed. This is an EPA requirement, 40 CFR Part 194, Subpart C
§194.42 (U.S. EPA, 1996); and

3. The monitoring network must provide spatially distributed head data adequate to allow both
defensible boundary conditions to be inferred for Culebra flow models and defensible
calibration of those models (PA requirements).

The degree to which these objectives can be reduced to quantitative measures is evaluated as part
of the work reported in this analysis report.

The minimized and optimized monitoring network will be created using available information
including existing wells and up to date understanding of the hydrology of the Culebra. The
optimization and minimization process takes the following factors into consideration:

1. Existing locations of fiberglass-cased wells
2. Existing well locations that are not needed
3. Culebra hydraulic property variations and geologic boundaries

1.3. Outline

This report documents the data, methods, and summary results of the work completed under
Analysis Plan 111 (Kuhlman, 2008). The analysis has four main components, which look at the
network optimization from the perspective of:

1. kriging: considers the spatial clustering of observation points and the geostatistical
structure of the data via the variogram (see Section 2.0);

2. local gradient estimators: Delaunay triangles that consider the geometric quality of the
well network and the observed gradient across the well network (see Section 3.0);

3. flow model correlation: uses the structure embodied in the calibrated flow model
regarding formation heterogeneity and geologic processes (see Section 4.0);

4. combining the results of the three above methods into one result (see Section 5.0)

1.4. Calculation domain

The spatial domain used for the different calculations in support of monitoring network design is
the same as the model domain used in the two-dimensional (2D) Culebra groundwater flow
model (Hart et al., 2008; 2009). This model domain is aligned with the Universal Transverse
Mercator (UTM) coordinate system and is 30.7 km long by 28.4 km wide (872 km? total, 587
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km?” active). The corners of the Culebra numerical groundwater model domain are listed in
Table 1-1. Relative to the CRA 2004 calculations, the eastern extent of the model domain has
moved from 624000 m to 630000 m UTM 1927 North American datum (NAD27) meters, as
explained in (Hart et al., (2008), §2.1). These coordinates define the center of 100 m x 100 m
model cells at the four corners of the model domain. All monitoring calculations that produce
results on a spatial grid employ the same grid as used for the 2D Culebra flow model (see e.g.,
Kuhlman, 2010b), unless otherwise noted.

Table 1-1. Culebra flow model domain UTM NAD27 Zone 13 coordinates

Model domain corner X [m] Y |m]

Northeast 630000 3597100
Northwest 601700 3597100
Southeast 630000 3566500
Southwest 601700 3566500

The WIPP land-withdrawal boundary (LWB) encloses 16 township and range sections
(approximately 41 km?) near the center of the MODFLOW model domain. The boundary of the
WIPP site is defined by the corners of the 16 sections, which have the UTM coordinates given in
Table 1-2. For the calculations described in this report, the coordinates given in Table 1-1 and
Table 1-2 are used to delineate areas, across which we average different measures of
effectiveness for the monitoring network.

Table 1-2. The WIPP LWB UTM NAD27 Zone 13 coordinates
WIPP boundary corner X [m] Y [m]

Northeast 616941 3585109
Northwest 610495 3585068
Southeast 617015 3578681
Southwest 610567 3578623

1.5. Observed Data

The approaches developed in this report can be applied to any set of nearly-simultaneous
undisturbed head measurements (i.e., a “snapshot” in time of the hydraulic head in the Culebra).
The wells used here are shown in Figure 1-1 and the data observed at these wells are listed in
Table 1-3 (freshwater head data from (Johnson, 2009)). The majority of the calculated
freshwater head values correspond to those used in the calibration of the CRA-2009 PABC
transmissivity fields (Hart et al., 2009) with four exceptions and one note:

1. A representative 2004 value from AEC-7 was used (this well was left out of the flow
model calibration due to known configuration problems in 2007). Freshwater heads at
AEC-7 have been very stable historically (1988 through 2004), and are now
representative of previous trends after well reconfiguration. Over 15 years (12/1988
through 3/2004) there were 172 head measurements with a standard deviation of only
0.56 m;

2. Freshwater heads from March 2007 were used at the H-19 wellpad, to include the six
redundant wells (H-19b{2,3,4,5,6,7}), which are only monitored quarterly. These wells
are only included in the variogram modeling, to better constrain head variation at short
distance scales (see discussion about optimal well networks for estimating variograms in
Warrick & Myers (1984) or Conwell, et al. (1997)). The central H-19b0 well is used as
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the sole H-19b well in the rest of the analyses discussed in this report. The coordinates of
the H-19b wells reflect their computed UTM x, y locations at the Culebra (229 m below
ground surface (bgs)), accounting for observed deviations from vertical completion
(Meigs et al., 2000). H-19b0 freshwater heads are within 2 cm between the March and
May 2007 observation times.

3. SNL-6 and SNL-15 have not recovered since being drilled in 2005, and will likely take
hundreds of years to recover to “static” conditions. These wells use land-surface
elevations in place of water levels in the model calibration (>1000 m above mean sea
level (AMSL)); they are not used in situations where a representative head value is
needed (e.g., variogram modeling and gradient estimation), but their locations are
included otherwise (e.g., kriging and network geometry optimization).

4. WIPP-30 is not included in the network optimization, since this well was plugged and
abandoned in May 2007.

5. WIPP-25 is used both here and in the CRA-2009 PABC Culebra flow modeling exercise,
although this well was P&Aed in 2009.

In addition to the calculated May 2007 freshwater heads, calibration results from the most recent
iteration of the Culebra PA T-fields (Hart et al., 2009) are also used. These results include the
simulated head values, calibrated transmissivity and anisotropy values, and particle travel times
from C-2737 to the WIPP LWB for each of the 100 model realizations. These results are used in
the third sensitivity-based approach.
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Figure 1-1. Locations of monitoring wells used in this study
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Table 1-3. Freshwater Heads from May 2007 used in analysis (Johnson, 2009)

UTMNAD27x UTMNAD27y  [reshwater
Well Zone 13[m] Zone 13 [m) Head
[m AMSL]
1 AEC-7V 621126 3589381 933.03
2 C-2737 613598.0 3581400.9 921.23
3 ERDA-9  613696.1 35819443 924.88
4 H-2b2 612662.5 3581639.7 929.62
5 H-3b2 613693.6 3580899.6 918.68
6 H-4b 612376.0 3578478.5 916.34
7 H-5b 616866.0 3584807.0 939.12
8 H-6b 610598.6 3584986.9 936.44
9 H-7b1 608122.8 3574646.4 914.58
10 H-9¢ 613971.1 3568237.2 912.80
11 H-10¢ 622976.3 35724443 922.02
12 H-11b4 615297.3 3579123.5 917.09
13 H-12 617022.0 3575460.5 916.53
14 H-15 615310.0 3581855.2 920.32
15 H-17 615717.0 3577507.8 916.24
16 H-1960® 6145152 3580718.9 918.82
17 H-1962®  614516.2 3580693.8 918.64
18 H-1963®  614526.1 3580719.6 918.57
19 H-1964® 6144946 3580727.6 918.77
20 H-1965@ 6145023 3580713.6 918.60
21 H-1966®  614518.0 3580738.5 918.58
22 H-19b7%  614516.0 3580706.7 918.54
23 IMC-461  606182.6 3582246.4 928.95
24 SNL-1 6137814 3594299.0 941.86
25 SNL-2 609113.1 3586529.1 937.65
26 SNL-3 616103.0 3589046.9 939.81
27 SNL-5 611970.2 3587284.7 938.59
28 SNL-6® 621244.6 3595390.0 856.00
29 SNL-8 618522.8 3583783.3 929.94
30 SNL-9 608704.8 3582237.7 932.05
31 SNL-10 611229.3 3581764.8 931.54
32 SNL-12 6132234 3572727.4 915.24
33 SNL-13 610394.3 3577599.8 918.19
34 SNL-14 614989.7 3577652.0 916.33
35 SNL-15®  618353.2 3580336.4 865.65
36 SNL-16 605191.8 3578999.7 918.68
37 SNL-17 609863.2 3576016.1 916.78
38 SNL-18 613605.8 3591528.6 939.87
39 SNL-19 607813.5 3588947.4 937.58
49 USGS-4 605841.0 3569887.0 911.11
41 WIPP-11  613788.2 3586474.0 940.65
42 WIPP-13  612645.0 3584241.7 939.78
43 WIPP-19  613738.8 3582773.5 933.66
44 WIPP-25  606385.7 3584022.8 937.57
45 WQSP-1  612559.4 35834303 938.28
46 WQSP-2 6137704 3583972.2 939.87
47 WQSP-3  614685.5 3583506.8 936.43
48 WQSP-4 6147245 3580762.8 919.50
49 WQSP-5  613666.5 3580353.6 918.18
50 WQSP-6 6126023 3580737.9 921.96

1. representative water level from 2004
2. H-19 wells from March 2007
3. not used in variogram estimation
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1.6. Run Control |

Nearly all the calculations done for this analysis report were completed on a Dell Precision 690
workstation, equipped with two quad-core 2.66-GHz Intel Xeon chips (X5355). The work was
done on this system running the Microsoft Windows XP (service pack 2) operating system. Two
of the scripts were run on the PA Pentium 4 Linux cluster (alice.sandia.gov); these scripts
checked the Culebra MODFLOW model results out of CVS (only accessible from Linux) and
performed the binary-to-ASCII conversion on the model-produced heads before creating a zip
archive of the files for transfer to Windows. The input files, scripts, and outputs are contained
within the analysis directory on the CD-ROM associated with this analysis report; the
contents of the CD are listed in Section 8.1.

Each section has a run control subsection describing the software and scripts that were used to
perform the analysis in that section. All scripts created for this analysis report are listed in
Section 8.0 with syntax highlighting and line numbers. Table 1-4 lists the software used
throughout this report, all software is either commercial off the shelf (COTS), or it is qualified
for use with WIPP PA.

Table 1-4. Summary of software used

Software Version Type Use

Golden Software Surfer 9.9 COTS Map plotting / Variograms

Microsoft Office Excel 2007 (SP1) COTS Plotting / Regression

R 2.10 COTS Statistical Script Interpreter
Enthought Python (EPD) 6.1 COTS Script Interpreter / Plotting

GSLIB program KT3D 2.0(1996) Qualified Kriging

The Mathworks MATLAB  R2009b COTS Script Interpreter / Plotting
Gnu Bash 3.00.15 COTS Script Interpreter (Linux)
Windows XP cmd . exe 5.1.2600 COTS Script Interpreter (Windows)

Scripts for Python, R, Bash, and MATLAB are ASCII and are listed in Section 8.0, while Surfer
and Excel input files are binary and therefore are included on the CD (see listing of contents of
CD in Section 8.1).

1.7. Notation

Throughout this analysis report the following conventions are used:

1. file names and directory paths are listed in the Courier New monospaced font;

2. source code excerpts are listed in the Lucida Console monospaced font;

3. program functions and classes are listed as code excerpts with trailing parentheses for
clarity;

4. units are given in metric, specified in square brackets (unless used as an adjective);

scalar variables are in italic font; and

6. vector variables are in bold font.

(9]
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2.0 Geostatistical Variance Reduction

Geostatistics is the modeling and prediction of spatially-correlated information and it has been
used extensively over the past 30 years in areas including ore reserve estimation, contaminant
mapping in soils and groundwater, and modeling spatial variability of physical properties of
aquifers and petroleum reservoirs. Kriging is the geostatistical algorithm used for spatial
estimation; compared to other spatial interpolation algorithms (e.g., inverse distance or linear
interpolation), kriging uniquely estimates both a value and its variance at unsampled locations.

Previous studies (Rouhani, 1985) have used kriging variance as a measure of the ability of a
groundwater monitoring network to predict hydraulic heads at locations where no wells exist.
Groundwater monitoring network design can be optimized to either minimize average kriging
variance across the domain or to minimize the maximum predicted kriging variance. The
estimation variance can also be used as a metric to justify removing wells from an existing
network such that the overall kriging variance has a minimal increase. As an example,
(Tuckfield et al., 2001) used the kriging variance of contaminants in a plume to determine the
redundancy of groundwater contaminant monitoring wells and targeted those wells with the
highest redundancy for removal from the network.

Kriging variance is a direct function of the spatial distribution of observations and the variogram
(which is fitted to observed data). Kriging variance is only indirectly a function of the observed
values; this is a major advantage of using kriging in monitoring network optimization.
Therefore, changes in the kriging variance from the addition or removal of a well can be
estimated prior to adding or removing that well with a standard kriging calculation.

The geostatistical analysis presented here utilizes ordinary kriging of the residual freshwater
heads, after removing a linear trend. The freshwater heads in the Culebra across the model
domain have a clear trend (i.e., the regional north-south gradient, see Figure 2-1). Although it is
possible to krige values while simultaneously estimating a trend (i.e., universal kriging), this
approach is not used here. Universal kriging does obviate the need to first estimate the linear
trend for the kriging, but model-fitting to the observed variogram is made more complex,
requiring a non-linear optimization or iterative refinement between variogram fitting and kriging
with a trend (Armstrong, 1984; Goovaerts, 1998).
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Figure 2-1.Projection of freshwater heads (circles), piecewise linear trend (blue dashed line), and best-fit
linear trend (red line) onto y-head plane at x-midpoint of MODFLOW model domain.

2.1. Trend Fitting and Residual Calculations

The residuals associated with the head observations from May 2007 are used for the
geostatistical variance reduction analysis. A best-fit linear surface through these heads was
calculated using the COTS statistical software R. The equation for the best-fit plane through
May 2007 freshwater heads is

h(x,y)= Ax+ By+C. (1)

The results of fitting this equation to the data in Table 1-3 are 4 = -9.0x10°, B=1.5x10" and
C=-4.6x10>m (see Table 2-1 for more significant digits and fit statistics). The y component (B)
of the gradient is approximately an order of magnitude larger than the x component (4). Both B
and C have ¢ statistic values indicating significance (|¢[>2), but 4 does not (see Table 2-1); the
east-west component of the regional gradient cannot be estimated accurately from the given data.
This same linear fit resulted in coefficients of A = 1.98x10™, B =1.62x107 and C =-5007.74 in
the 2004 version of this analysis. The y-component of the gradient (B) has not changed much,
but the x-component (4) and the additive constant (C) have changed. Overall, the resulting
gradient vectors are quite similar (see Figure 2-2), considering the large number of wells that
have changed between the two studies.
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Figure 2-2. Comparison of gradient vectors corresponding to best-fit planes through 2003 (black) and 2007
(red) data. Red dotted lines correspond to estimated gradient = gradient standard error.

Figure 2-3 illustrates several plots related to the fit of Equation (1) to freshwater heads. The
upper-left plot shows the residual (measured — trend) as a function of the trend. The outliers
from the moving-average residual trend are H-10c, WQSP-2 and WIPP-13 (see red line and
labeled points in the upper left plot in Figure 2-3). The upper-right normal quantile plot (Q-Q)
shows that aside from the extreme values, the residuals are ordered approximately normally
(plotting quantiles, rather than values makes this plot non-parametric). The lower-left scale-
location plot shows magnitude of residuals against the trend value, illustrating that the steep
gradient across the WIPP site (920-935 m elevation) is where residuals are largest on average.
The lower-right leverage plot shows the relative effects that removing a well has on the predicted
surface, plotted against residuals. The wells with the most leverage and the largest residuals are
wells at the extremities of the domain, including H-10c, H-9¢ and AEC-7.
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Table 2-1. Fit statistics for linear surface (Equation 1) through freshwater head data (Table 1-3)

1.5

1.0

0.5

0.0

(Intercept) y
-4.563833e+03 -9.023153e- 05 1.548563e-03
Residuals:

Min 1Q Median 3Q Max

-7.361 -4.833 -0.459 3.901 9.911

Coefficients:
Estimate std. Error t value Pr(>|t|)
(Intercept) -4.564e+03 5.594e+02 -8.158 5.83e-10 ***
-9.023e-05 2.231e-04 -0.405 0.688
y 1.549e-03 1.537e-04 10.077 2.06e-12 ***

Signif. codes: 0 ‘#***’ (0,001 ‘**’ 0.01 “*' 0.05 ‘.’ 0.1 * ’ 1

Residual standard error: 5.392 on 39 degrees of freedom
Multiple R-squared: 0.7226, Adjusted R-squared: 0.7083
F-statistic: 50.79 on 2 and 39 DF, p-value: 1.386e-11
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Figure 2-3. Statistics of linear surface (Equation 1) fit to May 2007 freshwater heads

With these parameter values, Equation 1 fits the May 2007 heads with R*=0.7083 (see
penultimate row of Table 2-1). This best-fit plane has a hydraulic gradient of 1. 55x10” and a
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Table 2-2. May 2007 freshwater head (FWH) data and residual. The residuals in the right column are
calculated as measured — modeled head, sorted by residual magnitude.

Observed Residual

Well FWH [m] [m]

1  H-3b2 918.68 -7.36
2 H-19b6 918.58 -7.14
3 H-197 918.54 -7.13
4 H-19b3 918.57 -7.12
5 H-19b5 918.6 -7.08
6 H-15 920.32 -7.05
7  WQSP-5 918.18 -7.02
§ H-192 918.64 -1.01
9 H-19b4 918.77 -6.93
10 H-19b0 918.82 -6.87
11 WQSP-4 919.5 -6.24
12 H-4b 916.34 -6.07
13 H-11b4 917.09 -6.06
14 C-2737 921.23 -5.60
15 AEC-7 933.03 -547
16 SNL-16 918.68 -5.19
17 SNL-1 941.86 -4.92
18 SNL-14 916.33 -4.56
19 H-17 916.24 -4.37

20 WQSP-6 921.96 -3.93
21 SNL-13 918.19 -3.04

22 ERDA-9 924 .88 -2.78
23 SNL-18 939.87 -2.64
24 H-7b1 914.58 -2.28
25 SNL-17 916.78 -2.04
26 SNL-19 937.58 -1.45
27 H-12 916.53 -0.79
28 SNL-8 929.94 -0.13
29 IMC-461 928.95 0.15
30 SNL-3 939.81 1.37
31 USGS-4 911.11 1.41
32 SNL-12 915.24 1.81
33 H-2b2 929.62 2.34
34 SNL-2 937.65 2.48
35 SNL-5 938.59 251
36 SNL-9 932.05 3.49
37 H-6b 936.44 3.79

38 SNL-10 931.54 3.94
39 WIPP-19 933.66 4.72
40 WIPP-11 940.65 5.99
41 WIPP-25 937.57 6.03

42 H-9¢ 912.8 6.39
43  WQSP-3 936.43 6.44
44 H-5b 939.12 7.31

45 WQSP-1 938.28 822
46 WIPP-13 939.78 8.47
47 WQSP-2 939.87 9.08
48 H-10c 922.02 9.91

2.2. Variogram Estimation and Modeling

The experimental variogram is calculated and modeled using Surfer. Introductions to variogram
modeling and geostatistics in general are found in many places in the geostatistics literature; e.g.,
(Isaaks and Srivastava, 1989; American Society of Civil Engineers, 1990; Kitanidis, 1997). The
experimental variogram is calculated in Surfer as
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A 1 N ,
hy=—— u,)-z(u,+h)], 2
y(h) 2N(h),z=1:[z( )= z(u, +h)] (2)
where h is the lag spacing vector [m] (most generally 4 is a vector, but later it will assumed to be
a scalar distance), z(u;) are the residual freshwater head values at u;, u; is a vector of spatial
coordinates (x,y) for the sample locations of each residual value, and N(h) is the number of pairs
of data points separated by k (within a given tolerance of k). The values of the experimental

variogram 7 , are plotted as a function of |k] and a variogram model (a mathematical function) is

fit to these data. Valid variogram models ensure a positive-definite covariance matrix in the
kriging equations.

In the current analysis, the infinitely differentiable Gaussian variogram model is chosen to fit the
experimental variogram. Since freshwater hydraulic head and residuals computed from it are
assumed to be smoothly varying properties (with well-defined first and second spatial
derivatives), a variogram that is at least second-order smooth is appropriate. The Gaussian
variogram model, as implemented in the kriging program KT3D in GSLIB (Deutsch and Journel,

1998) is
3h\?
y(h)=C {1 — exp I— (7) I} (3)

where C is the sill [m”] and a is the range [m]. The variogram modeling is performed using
Surfer, which models the Gaussian variogram model without the factor 3 in the exponential. The
Gaussian model fit to the experimental variogram, computed from the residual heads, is shown in
Figure 2-5. This model has a nugget value of 0.1 m?, a sill of 40 m” and an effective range of
7500 m (the 2004 report had a nugget of 13.0 m?, a sill of 45.2 m?, and an effective range of
9000 m). The numbers of data pairs used in the calculation of each point in the experimental
variogram are also shown. The calculation of the experimental variogram was done by
considering combinations of pairs of data points in all directions. By not considering direction,
only distance, the variogram is an omnidirectional calculation using 4, where £ is the length of
the vector k. An omnidirectional variogram was also used in the 2004 version of this analysis.

Although a small number of pairs (<30) exist for many of the shorter lag spacing in Figure 2-5, it
is felt this variogram is still valid and representative. The only short-lag observation pairs are the
redundant wells on the H-19 wellpad. These wells were included in the variogram analysis to
get some approximation of the short-lag behavior of freshwater head residual, coupled with the
knowledge that the freshwater head residual is a smooth function (i.¢., the reason the
differentiable Gaussian variogram was used in the first place). The model variogram used in
2004 had a much larger nugget value than the current model does (13 m® — compared to 0.1 m?),
but the 2004 model did not use the redundant H-19 wells, which solely contribute to the short-lag
experimental variogram.

Although it is possible to calculate directionally dependent variograms, this was not done. The
steep north-south hydraulic head gradient observed in the Culebra across the WIPP site is
coincident with the densest clustering of observation wells (see steep segment in the center of
Figure 2-1). This produces a greater east-west correlation between data compared to correlation
in the north-south direction (across the steep gradient) for the entire domain. Since most of the
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domain where kriging is being used to estimate values is outside the LWB, an anisotropic model
would be misrepresentative of this apparent anisotropy, although it may fit the observed data.
Although kriging effectively handles clustered data during the estimation process, the effects
which data clustering can have on the variogram modeling process must be considered by the
analyst.
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Figure 2-5, Experimental variograms (points) and best-fit Gaussian model variogram (lines) for three
different lag widths. NB: there is a factor-of-three difference in definition of variograms between Surfer and
GSLIB (multiply lag by 3.0).

It is possible to fit different models or models with different parameters to the same data, but it is
felt that the choice of variogram model and parameters given here sufficiently represents the data
and corroborates with the presumed knowledge of the system. If a different type of surface were
fit to the data, the residuals would have a different structure and therefore a different variogram

as well.

Following up on results of the trend surface sensitivity to removing a steel-cased well (see
Section 2.1), the experimental variogram is re-computed for each well removed and shown in
Figure 2-6. The exact values of the experimental variograms are not important, just the
qualitative observation that the relative variability between the different experimental variograms
is small. Both the change in the best-fit surface, and the subsequent changes in the variogram of
head residuals, due to removing (or adding) a single observation will diminish as the dataset
becomes larger. For the current dataset of over 40 monitoring points, the variogram is virtually
unchanged upon removal of a steel well, re-calculation of the trend surface (see Figure 2-4) and
residuals and model variogram calculation (see Figure 2-6).
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Figure 2-6. Experimental variograms after removing a steel-cased well (variogram for all wells shown in red).
Residuals are re-computed based on the best-fit linear trend for each new set of wells and the variogram is re-
computed for each new set of residuals.

2.3. Ordinary Kriging

Kriging is a geostatistical algorithm for estimating a property at unsampled locations. The
kriging equations are formulated to provide an unbiased, minimum variance estimate of the
property from a linear combination of the surrounding measured data. Kriging additionally
provides a measure of the uncertainty associated with each estimate. The uncertainty measure is
known as the kriging variance or the estimation variance. Details on the many variants of the
kriging algorithm and its application can be found in the literature, e.g., (Deutsch and Journel,
1998; Goovaerts, 1998). For this work, we use ordinary kriging (OK) and the details of the OK
algorithm are presented briefly.

Consider the problem of estimating the value of a continuous attribute, z, (e.g. head residual) at
an unsampled location u. The information available consists of measurements of z at n locations
Ug, z(uy), o = 1,2, ..., n. Kriging is a form of generalized least-squares regression and therefore
all univariate kriging estimates are variants of the general linear regression estimate z*(u) defined
as

n(u)

2’ (W) - m(u) = Y 4, ([z(u,) - m(u,)] (4)

where Aq(u) is the dimensionless weight indicating the contribution of z(u,) - m(u,) to the
estimate of z (z at unsampled locations), and m(u) is the trend or mean component of the
spatially varying attribute [m].

The most common kriging estimator is OK, which estimates the unsampled value z*(u) asa
linear combination of neighboring observations
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n(u)

Zog (W) =D 4, (w)z(u,) (5)

OK weights A, are determined so as to minimize the error or estimation variance o*(u) =
Var{z*(u) —z(u)} under the constraint of unbiasedness of the estimate. These weights are
obtained by solving a system of linear equations, which is known as the ordinary kriging system
of equations. Solution of the kriging system requires that covariance, Cov(u,,up), between any
two locations be calculated. Covariance is derived from the variogram model under an
assumption of second-order stationarity. The unbiasedness of the OK estimator is ensured by
constraining the weights to sum to one, which requires the definition of the Lagrange parameter
4(u) within the system of equations (Bazaraa et al., 1993),

n(a)

D Ay, —uy)—p)=y@, —u)  a=1..,n)

’@) (6)
D A, w)=1.

p=1

The kriging variance is also derived from the set of weights and the Lagrange parameter
determined through solution of (6) and it is given as:

N
0'(2)1< (u)=Cov(u,u)- Z A,Cov(u,u, )~ u (7)

a=1
The covariance [m’] used to calculate the ordinary kriging variance is derived from the model
variogram. The covariance between two points separated by zero lag, Cov(u,u) = Cov(0) is
equal to the variance of the data set. It is important to note that the OK variance is not a direct
function of the specific data values, other than how those data values define the experimental
variogram of the residuals (see discussion associated with Figure 2-6), to which the model
variogram is fit.

2.4. Estimation Variance Calculations

The program KT3D (Deutsch and Journel, 1998) is used with the model variogram determined
above (estimated and plotted using Surfer) to calculate both the estimated residuals and variance
at all locations. The full calculation domain is 87188 100-m x 100-m cells, with 36213 of those
cells (41 percent) inactive, lying either beyond the no-flow boundary on the west or the
composite H2/M2 — H3/M3 Rustler halite margins on the east. Those inactive cells are not
included in the calculations of estimation variance. For the calculations done herein, the average
estimation variance both within the flow domain and within the WIPP site are calculated for
different monitoring well configurations.

The map of estimation variance for the May 2007 monitoring network defined in Table 2-2 is
shown in Figure 2-7. The effect of the monitoring network configuration on the resulting
estimates of variance is obvious. The lowest estimation variance values (blue) occur at the well
locations and the highest values (red) occur at locations that are beyond the distance of the
variogram range (7500 m) away from existing wells. The minimum possible value of the kriging
variance is the value of the nugget in the variogram model (0.1 m?). The maximum kriging
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2.4.2. Remove one steel well

The same approach for determining the variance reduction due to the addition of a new
monitoring well can also be used to compute the potential increase in the estimation variance
from the removal of an existing well. In this case, it is possible to recalculate the variogram
model from the remaining wells after any number of wells are removed; however, to make the
process more efficient, the same variogram is used for all calculations done herein. This
approach assumes that the variogram does not change significantly with the loss of any one of
the wells (see discussion associated with Figure 2-6).

Each existing steel-cased well is removed and the average estimation variances across the flow
domain and the WIPP site are recalculated. Those wells that cause the smallest increase in
average estimation variance are the ones that could be removed with a minimal impact on the
ability of the monitoring network to provide accurate predictions of heads at locations without
monitoring wells. The results of these calculations are shown in Table 2-3.

Table 2-3 shows the change in the average estimation variance within the flow domain as well as
within the WIPP site area as calculated for the less-by-one networks associated with removing
steel-cased wells. Removal of fiberglass-cased wells is not considered, since they are expected
to have a long useful life. Table 2-4 shows the same results only averaged over the WIPP LWB
when steel-cased wells are removed from the network. Removal of wells that result in the
largest increases in the estimation variance are the wells that are most important with respect to
the ability of the network to predict heads. Therefore, if the goal is to predict heads across the
entire domain, the wells that create the largest increases in estimation variance when removed
are generally those located distant from other wells: H-10c, USGS-4, H-9¢, AEC-7, H-11b4, and
WIPP-11. Small decreases in the estimation variance can also occur with the removal of a well
(e.g., ERDA-9, H-3b2, H-2b2, and WIPP-19). These decreases are due to the configuration of
the current wells creating negative kriging weights in the solution of kriging equations (see
positive values in mean and median columns of Table 2-3 and Table 2-4). These decreases are
always less than two-tenths of one percent of the original variance and are considered as
insignificant near-zero changes in this work.
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The wells on the other end of the spectrum, which would have the largest effect on the mean or

median estimation variance, include wells on the periphery of the domain (i.e., large bars in
Figure 2-14).

Table 2-4. Results of estimation variance changes over WIPP Land Withdrawal Boundary for removal of one
well from the network. A high rank indicates importance while a low rank indicates little impact on the area

within the LWB.

1A s.tan.dard A mean A median ave

deviation| rank
H-10c 0.0001% 1 0.00001% 1 0% 1 1.00
AEC-7 0.0001% 2 -0.0001% 2 0% 1 1.67
UsGs-4 0.01% 3 -0.02% 3 0% 1 2.33
H-9¢ 0.48% 7 -0.09% 4 -0.02% 5 5.33
WIPP-11 0.23% 4 -0.72% 5 -0.65% 8 5.67
WIPP-25 0.84% 8 -0.89% 6 -0.01% 4 6.00
H-3b2 0.33% 6 -1.32% 7 -0.51% 7 6.67
ERDA-9 0.87% 9 -1.37% 8 -0.42% 6 7.67
H-2b2 1.07% 10 | -1.88% 9 -0.90% 9 9.33
WIPP-13 0.27% 5 -2.83% 10 | -5.67% 16 | 10.33
WIPP-19 1.65% 11 | -2.85% 11 | -4.31% 11 | 11.00
H-7b1 24.04% 14 | -7.51% 13 | -1.57% 10 | 12.33
H-11b4 11.87% 12 | -7.35% 12 | -5.64% 14 | 12.67
H-12 12.88% 13 | -7.70% 14 | -5.66% 15 | 14.00
H-4b 28.12% 15 | -11.73% 16 | -4.65% 12 | 14.33
H-17 29.34% 16 | -11.57% 15 | -4.75% 13 | 14.67
H-5b 47.64% 17 | -19.15% 17 | -6.72% 17 | 17.00

The removal of wells far from the WIPP site creates the largest increases in the estimation
variance averaged over the flow domain, but the removal of many of these steel-cased wells has
little or no effect on the estimation variance averaged across the WIPP site. These wells, AEC-7,
H-9c, H-10c, USGS-4, and WIPP-25 are too far away from the WIPP site to directly impact the
mean or median estimation variance inside the LWB. The most important monitoring wells,
those that create the largest variance mean or median increase upon removal, for predicting
heads within the WIPP site are: H-5b, H-4b, H-11b4, H-12, and H-17. All these wells are
located near the LWB (H-12 being the furthest away from the LWB). Some of the wells have
very large effects on the standard deviation of the kriging variance within the site, but the trends
also follow those for the mean and median kriging variance.

Figure 2-15 summarizes the results in Table 2-3 and Table 2-4 graphically, indicating where the
wells with high or low rank are located geographically.
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Figure 2-15. Steel-cased wells ranked by effect of removal on kriging variance; symbol sizes are proportional
to overall rank (and therefore importance), data in Table 2-3 and Table 2-4. MODFLOW active model
domain delineated in green, WIPP LWB is black square.

The wells that create the smallest increases in estimation variance upon removal for both the
WIPP site and the flow domain are: ERDA-9, H-2b2, and H-3b2. Any one of these three wells
could be removed with minimal effect on the ability of the network to predict heads across both
the domain and the WIPP site. These calculations are for removal of a single well.
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Removal of wells from the existing monitoring network was also examined using the kriging
estimation variance. The impact of well removal was evaluated by calculating the increase in
estimation variance for both the entire flow domain and the area within the WIPP LWB. These
calculations were done for the removal of a single well from a base case of 42 wells and the
results are only valid for the removal of the one specified well. These results also safely assume
that the variogram is constant across all monitoring network configurations (see Figure 2-6).
These calculations were completed again for removal of combinations of multiple wells when
those combinations of interest are defined. Wells that are most important to the existing
monitoring network that should not be removed are listed above and are, generally, those wells
most distant from any existing wells. Wells that have the smallest influence on the ability of the
current network to predict heads at unmeasured locations across the entire flow domain as well
as within the WIPP site are also listed above. If more than one well is to be removed, the
combinations of wells should be selected from this list.

2.6. Kriging Variance Reduction Run Control Summary

The kriging variance reduction analysis performed in this section is described here in terms of
files, programs, and scripts used. The required files are located on the CD and are described in
sufficient detail to allow recreation of the results given in the text.

2.6.1. Linear trend fit and variogram calculations

The linear trend fitting to the computed freshwater head values (see Section 2.1, Table 2-1, and
Figure 2-3) was computed in the COTS statistical software R. The script

plot_linear fit_ summary.R (Section 8.2.1) uses the built-in linear model function Tm() to
produce a linear fit, then standard statistics are produced by summarizing this fit (see see Table
2-1 produced by summary () in line 15 of script) and standard diagnostic plots (see Figure 2-3)
are created by plotting this fit (see lines 16 and 17 of script).

The sensitivity of the experimental variogram to removal of a single steel-cased well was
investigated (see Figure 2-4 and Figure 2-6) using the Python script

remove_one variogram effects.py (Section 8.2.2). This script loaded the well data (lines
4 through 35) and performed a least-squares fit of a linear surface (see Equation 1) through the
data (e.g., see Menke (1984), Chapter 3), looping through the data to remove one steel-cased
well at a time, re-computing the fit (lines 37 to 58). An ASCII text file was output (see line 24
for the filename) with summary statistics relating to each network-minus-one fit corresponding
to the lines of the output file. This csv file was imported into MS-Excel, resulting in the plot of
relative percent change in the slope and direction of the best-fit linear surface due to removing
each steel-cased well, as shown in Figure 2-4 (see file

trend_surface_remove one results.xls onthe CD in the
report/figures/02_kriging directory).

This same Python script also wrote a set of data files corresponding to the main dataset less a
single steel-cased well for variogram analysis. These data files were imported into Surfer for
experimental variogram plotting to create Figure 2-6; see the CD in directory
report/figures/02_ kriging for the data files and resulting Surfer file
perturbation_spread of variograms.srf used to plot this figure. In the same directory
on the CD, the Surfer file used to generate the final experimental variogram plot in Figure 2-5
can be found (may2007_variogram modela.srf).
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2.6.2. Kriging variance reduction calculation

The kriging variance minimization (see Section 2.4) consisted of a main Python script,

krig plus_one.py (Section 8.2.3), which drives the kriging process for different inputs and
summarizes the outputs. This main script uses two subsidiary scripts shared data.py
(Section 8.2.4) and kt3d_driver.bat (Section 8.2.5) to perform its duties.

2.6.2.1. Kiriging add one

The krig plus_one.py script is explained here. Most of the first half of the file (lines 18 to
130) is the definition of the function krig(), which is called with arguments related to where to
put an additional data point. Lines 28 through 53 are the input file for KT3D saved as a string
having key parameters in the input file substituted with variables passed to the function (e.g., see
pattern %(varname)d on lines 38 and 39). The data file used as input to KT3D is written on
lines 56 to 61, potentially with an additional point appended to the end of the file. The DOS
batch file kt3d_driver.bat is called to run kt3d.exe on lines 65 to 73. The kriging
variance output created by running KT3D is read on lines 75 to 78, while certain subsets of the
variance arrays are selected on lines 87 and 88. Lines 91 through 130 are located inside a
threading w1 th lock block, since they are writing summary results to a global variable (there are
potentially more than one thread running at a time and the lock is to prevent two threads
attempting to write at the same time and corrupting the data). Lines 95 through 115 are related
to model-domain wide statistics, while lines 117 through 130 are related to the same statistics but
only computed over the WIPP LWB.

The actual program flow begins at line 139, with the reading and preparation of various data
from disk (lines 139 to 207). The last portion of the script (inside the if __name__ ==
“_main__" conditional on line 214) is only executed if the script is called from the command
line. This portion is not executed if the script is imported (as is done in the
krig_remove_one_steel.py and krig remove two_steel.py scripts). This final
section sets up the arrays for saving the results (lines 216 to 218), calls krig() with the original
unmodified dataset for comparison (line 220), and loops over all locations on a grid, adding one
point at a time to the analysis (lines 229 through 242). Finally, the results of the entire analysis
are saved to disk (lines 251 through 260 — these results are on the CD in the
analysis/kriging/kriging add well/output directory); these matrices of results are
used to plot the color figures in Section 2.4.1 using the MATLAB script

krig_add one_plotting.m one the CD inthe report/figure/02_kriging/ directory
(since this MATLAB script was not used for analysis (only creation of color contour maps from
ASCII data files), it is not listed in Section 8.2).

At lines 171 through 175, ASCII matrices are imported that indicate whether a given model cell
is inside the active portion of the MODFLOW model domain. These matrices are written by the
MATLARB script generate_model cell masks.m (Section 8.2.6), which uses the built-in
function inpolygon () to determine which cells are inside the irregular polygon defining the
MODFLOW active model area.

The krig plus_one.py script is threaded because each call to KT3D takes roughly 10 to 15
seconds and there are tens of thousands of locations in the model domain where a point can be
added; since the results of adding each point are done individually, the problem lends itself well
to parallelization (i.e., a speedup of over four times using eight processors).
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2.6.2.2. Kriging remove wells

As already stated, the scripts that run KT3D for the analysis of removing a well from the network
import the majority of their functionality from the krig_plus_one.py script described in the
previous section. The scripts for removing one (Section 8.2.7) and two wells (Section 8.2.8) are
quite similar, and are described here. Each script reads in the relevant well and model domain
data, the in the remove-one well case each steel well is individually removed from the network
and the krig() function defined in the import krig plus_one.py script are called to do run
KT3D and summarize the results (lines 34 to 49). The results are written to ASCII files (see
lines 44 through 49) for summarizing into Table 2-3, Table 2-4, Figure 2-14, and Figure 2-16.
The source of the tables and bar-chart figures is saved in the spreadsheet

remove_one_well results2 2010.x1s onthe CD inthe
analysis/kriging/kriging remove steel/ directory.

The map in Figure 2-15, showing the relative importance of removing steel-cased wells from the
network with respect to the entire domain and the WIPP LWB, was created in Surfer from the
tabular results. The Surfer file (remove_one steel well.srf) s included on the CD in the
report/figure/02_kriging/ directory.

In the remove-two-wells case, a list of four “most likely to be removed” steel-cased wells are
used as the first well, then the remaining steel-cased wells are each additionally removed,
similarly calling the imported krig () function to run kt3d and summarize the results (lines 38
to 68). Similarly, these results are written to files for summary in Table 2-5 and Table 2-6.

The source of the scatter plots in Figure 2-17 and Figure 2-18 and the tables of data is the
spreadsheet remove_two_well results3.xls, located on the CD in the
report/figure/02 kriging/ directory.
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3.0 Local Gradient Estimation with Triangulation

The methodology used for local gradient estimation in the previous revision of this analysis
report (McKenna, 2004) and in the associated follow-up paper (McKenna and Wahi, 2006)
involved the use of “three-point estimators” to assess the ability to estimate head gradients in a
2D aquifer. The analysis presented here is instead in terms of a simpler approach using non-
overlapping Delaunay triangles (a small subset of the triangles included in the three-point
estimators).

Although three-point estimators have been used several places in the literature to estimate a
regional gradient value from observed data; see e.g., (Cole and Silliman, 1996; Conwell et al.,
1997; Silliman and Frost, 1998; Silliman and Mantz, 2000; McKenna and Wahi, 2006), few
practicing hydrologists take this approach to estimating the gradients when presented with 2D
head data. It is a more common approach to contour observed heads (i.e., potentials), estimating
gradients from equipotential contours. While there are numerous techniques for creating contour
maps from point measurements (e.g., kriging, inverse distance, splines), linear interpolation
could be considered the most basic and easily understood approach. Often a geologist will
sketch in the results of linear interpolation between data as a first step to hand contouring depth
or thickness data, and then they will modify these results with their own professional judgment.
In two dimensions, three points define both a triangle and a piecewise-constant estimate of the
gradient across that triangle. A group of more than three points defines a network of triangles
(bounded by their convex hull) and a piecewise-constant estimate of the gradient across the area
inside the convex hull.

Linear interpolation is used for the local gradient-based estimation, since linear interpolation is a
straightforward method that is easy to visualize and understand, and triangulation is readily
implemented using available tools in the COTS software MATLAB (i.e., the built-in functions
delaunay() and voroni(Q)).

3.1. Delaunay Triangulation

In the three-point estimator approach of (McKenna, 2004), all possible combinations of three
points were constructed into triangles to assess the quality of the network (with a fraction of the
triangles discarded based on selection criteria). Many thousand overlapping triangles made
visualization of results difficult (see Figure 3-1). For 30 wells, there are 4060 possible three-well
combinations and for 40 wells there are 9880 possible combinations. In the current approach,
the much smaller subset of non-overlapping triangles produced by Delaunay triangulation is
used.

Since the triangles will not overlap, the gradients estimated with this technique are as local as
possible with the given set of points. When using overlapping triangles, the selection of one
gradient estimate over another (when two triangles cover the same area) may become complex,
or some sort of averaging must be done to produce a useful result.
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¢ Delaunay triangles uniquely tessellate the area within a convex hull enclosing the data
(except in certain symmetric cases);

e Voronoi polygons fill the entire plane; the polygons corresponding to the data on the
convex hull have infinite area;

e Vertices of Voronoi polygons correspond to the centers of circles that uniquely go
through the three neighboring points (see Figure 3-2b);

¢ In asquare grid of points, Delaunay triangles become right isosceles triangles (two equal
angles and sides) and Voronoi polygons become squares (see Figure 3-3).

¢ In atriangular grid of points, Delaunay triangles become equilateral and Voronoi
polygons become regular hexagons (see Figure 3-4).

Three points are the minimum required to estimate direction and magnitude of a gradient from
2D point observations; Delaunay triangles therefore define piecewise-constant gradient over the
area enclosed by the convex hull surrounding all points. Delaunay triangles, when assigned z
values at the vertices (i.e., heads), become a triangular irregular network (TIN); these are often
used in engineering to approximate irregular surfaces.

0.5¢ 051 + + + r
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Figure 3-3. Delaunay triangles and Voronoi polygons for symmetric square grid; note ambiguity in triangles

. t :
0 0.25 05 0.75 1
Figure 3-4. Delaunay triangles and Voronoi polygons for symmetric triangular mesh
The regular grids of points in Figure 3-3 and Figure 3-4 illustrate the shapes of triangles that
arise under these ideal conditions (compared to the random arrangement of points in Figure 3-2,

and seen in the following Culebra monitoring network analysis).
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Voronoi polygons are not used in this analysis, but they are included in this introductory
discussion because it is clear that they are unique for a given set of points and there is a unique
mapping from Voronoi polygons to Delaunay triangles, therefore it is illustrated how the
Delaunay triangles are also unique. The non-unique case corresponds to the extreme symmetry
shown in Figure 3-3; squares can equivalently be cut into triangles along either diagonal. This
will not affect the results of this analysis, since the Culebra monitoring wells are not located on a
symmetric rectangular grid.

3.2. Triangle Shape Metric

To rank the quality of the shape of triangles, the ratio of the minimum and maximum of the
interior angles is assessed; this value is believed to capture the quality of a triangle for the
purposes of gradient estimation from three data points. The lengths of the sides of the triangles
can be related to the size of the angles through the law of sines,

a_ sin( 4)

b sin(B)’ ®)

where a and b are the shortest and longest sides of the triangle (i.e., the min/max length ratio),
and 4 and B are the corresponding largest and smallest angles of the triangle — angle A4 opens up
to side a (i.e., the ratio of the sines of the min/max angles).

In the case illustrated in Figure 3-3, the triangles have angle ratios of 0.5 (one 90° and two 45°
degree angles). Figure 3-4 illustrates triangles with an angle ratio of 1 (three 60° angles); this is
the maximum ratio. Using the angle ratio as the metric, therefore the “best” triangle is an
isosceles one. Likewise, triangles with one dimension or angle much smaller than the others will
have a very small angle ratio, approaching zero in the limit as the three points become collinear.
Triangles with large aspect ratios (proportional to the inverse of the angle ratio) tend to produce
worse estimates of the gradient, based on an assumed unbiased normal distribution of errors
associated with observing heads in a well (McKenna and Wahi, 2006).

Figure 3-5 shows the distribution of triangle size, interior angle ratio and the magnitude of the
gradient computed from observed May 2007 freshwater heads. In Figure 3-5a, the logarithm of
area is used to color-code the triangles that make up the 2007 Culebra monitoring network. Some
very elongate triangles have small areas, considering how distant the wells are that make up their
corners (e.g., the blue triangle along the west-central edge of the area, comprising wells WIPP-
25,IMC-461, and SNL-16). Figure 3-5b shows the distribution of the angle ratio, for the 2007
Culebra network; the dark red triangles are nearly isosceles, while the dark blue triangles have
one large obtuse angle. Figure 3-5¢ shows the logarithm of the head gradient magnitude,
computed from the three corner wells. Aside from the two anomalously high gradient areas
associated with SNL-6 and SNL-15 (east-central and north-east areas), there is an east-west
yellow band across the middle of the model area, with blues north and south of it, representing
the observed higher freshwater head gradient across the center of the LWB (e.g., see Figure 2-1).
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magnitude. There is a greater density of wells within the WIPP LWB, where steeper gradients
are observed; this trend is corrupted by the anomalous steep gradients associated with large
triangles containing SNL-6 and SNL-15.

Based on this heuristic analysis, the angle ratio is thought to be an adequate primary metric for
triangle quality. Triangle size is considered to be independent information, but it is not directly
correlated with a desired monitoring network objective. While smaller triangles resolve more
detail than larger ones, a dense network is much more expensive and large triangles are
allowable in the portions of the domain further from the WIPP land withdrawal boundary. This
metric obviously only considers the network geometry; there may be important hydrologic or
geologic information to be gained from locating a well at locations which may be sub-optimal
solely from a geometric point of view.

Freshwater head gradient direction and magnitude are illustrated in Figure 3-7 using vectors
scaled to the gradient magnitude. Figure 3-7a shows the network for the 2007 Culebra
monitoring network, while Figure 3-7b shows the remaining network after leaving out SNL-6
and SNL-15, which are non-representative of heads west of the composite H2/M2 — H3/M3
Rustler halite margins (Johnson, 2009). Leaving out these two wells removes the spurious large
gradients around these wells, but also changes the overall shape of the network on the eastern
third of the domain (see Figure 3-7).

Figure 3-8 and Figure 3-9 show the same quantities in Figure 3-5 and Figure 3-6 for the
Delaunay triangles that correspond to the existing network without SNL-6 and SNL-15. Most of
the triangles in the domain are unaffected by leaving these wells out, since only 10 triangles
include either of these points in the existing network. Apparent changes elsewhere in the domain
are due to rescaling of the color gradient in the figures, because the minimum or maximum
values are linked to triangles changed by leaving out these two wells. The steeper gradient
across the WIPP LWB is more evident in Figure 3-8c (due to color scaling). The negative
correlation between area and gradient is also clearer in Figure 3-9¢, as most of the large triangles
with steep gradients were connected to the low values in either SNL-6 or SNL-15.

This section introduces the triangle interior angle ratio as a continuous metric that identifies
isosceles-like triangles and is not spuriously correlated to triangle size or observed gradient
between head observations at wells. Based on the comparison with and without SNL-6 and
SNL-15, these wells are left out of any analysis that requires head values (i.e., the remove-one-
well analysis)
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Figure 3-6. Scatter plots of relationships between different triangle metrics for 2007 Culebra well network.
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Figure 3-7. Delaunay triangles for 2007 Culebra network (a) with and (b) without SNL-6 and SNL-15.
Gradient plotted as arrows (tails starting at center of triangle); length of arrow is proportional to magnitude
gradient, arrow orientation indicates groundwater flow direction. WIPP LWB (black solid), M2/H2 - M3/H3

composite Rustler halite margins (magenta), and no-flow (black dashed) boundaries shown.
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Table 3-1. Ranking of steel-cased wells based on triangle gradient estimators. A low numerical rank indicates

importance.

%A mean %A median average

angle ratio _ angle ratio rank
H-17 358 7 1961 1 4
H-10c 609 4 927 5 4.5
H-11b4 3.38 8 19.61 1 45
H-7b1 607 5 704 6 55
H-9¢ 702 2 575 9 55
H-2b2 273 12 1961 1 6.5
H-4b 634 3 3.09 10 6.5
AEC-7 8.65 1 1.51 14 7.5
H-3b2 3.13 9 687 7 8
ERDA-9 309 10 687 7 85
WIPP-19 270 14 14.61 4 9
H-5b 447 6 0.00 16 11
WIPP-13 275 11 3.08 11 11
USGS-4 096 16 274 12 14
H-12 272 13 0.00 17 15
WIPP-11 144 15 0.00 15 15
WIPP-25 036 17 1.51 13 15

These bars represent the areas colored in the figures in the figures in Section 9.0. The individual
figures in Section 9.0 show the localized effects of removing a well from the network; the
colored areas only immediately surround the well being removed. The effects due to removing
wells in areas with small triangles (e.g., inside and near the WIPP 1.WB) will obviously only
propagate out to a small area. Wells that are part of large triangles along the periphery of the
domain will affect larger areas when removed.

3.5. Remove Two Steel Wells

Using the same list of “probable” wells from section 2.4.3 (kriging variance reduction), the local
gradient estimator analysis of the previous section can be repeated for each of the networks with
one of the steel-cased wells already removed. Table 3-2 shows the cumulative effect that
removing two steel-cased wells has on the domain-average mean angle ratio (see Figure 3-12 for
the corresponding single-well analysis). The percent changes (illustrated in the color image)
show that removing any pair of wells including H-10¢ (row 9) or most wells in a pair with well
H-7b1 (row 7, column 4) lead to improvements in the geometric layout of the observation wells,
because these wells are involved in several large elongate triangles. These types of
improvements are not the goal of this analysis. Well H-9¢ (row 8) shows the largest decrease in
the domain-average angle ratio metric, corresponding to the worst effects on the well network;
this well is on the southern edge of the network.

Table 3-3 shows how median triangle size in the network increases (red) or decreases (blue) as
pairs of steel-cased wells are removed from the network. Removing other steel-cased wells in
conjunction with H-10c (row 9) would decrease average triangle size because the convex hull
becomes smaller upon removal of this well.
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mainly the ratio of the maximum and minimum angles, with the median triangle size used as a
secondary metric.

3.7. Local Gradient Estimator Run Control Summary

The local gradient estimator analysis performed in this section is described here in terms of files,
programs, and scripts used. The required files are on the CD and are described in sufficient
detail to allow recreation of the results given in the text. All the analysis in this section was done
using MATLAB, and the calculation and plotting of results are partially mixed together in the
scripts.

3.7.1. Triangles: add a well

The MATLAB script triangles_add one.m (Section 8.3.1) is the main script that performs
the calculations for the evaluation of additional locations in terms of Delaunay triangles. This
section describes the script’s basic behavior. The first lines of this script load in the required
data from files (lines 1 to 30). A rectangular array of x and y locations (UTM NAD27 Zone 13
[m]) are created using meshgrid() (lines 32 through 34), which is then compared to the
polygon defining the active model domain using inpolygon() (line 36), to determine the cells
that are inside the active MODFLOW domain. These matrices are then unwrapped into vectors
to simplify indexing (line 40).

The main loop of this script (lines 45 through 111) goes over each potential new location (plus
one for the base case with no additional monitoring locations), re-triangulating the network (line
59). The results of deTaunay ()is a matrix with three columns corresponding to the three
vertices of each triangle, and a row for each triangle. The values in this matrix are integer
indices pointing to the values of the x and y coordinates passed to delaunay (). For example, if
tri=delaunay(x,y), where x and y are each a vector of 3 locations, tri will be a 1x3
matrix, where the corners of the triangle specified by the first (and only) row of tri are obtained
addressed like x(tri(1,[1,2,3]1)), y(tri(1,[1,2,3])). The geom matrix stores the
results of the geometric calculations for each triangle in the network; rows 1-3 are the lengths of
the sides (computed using the Pythagorean theorem — lines 70 to 77), rows 4-6 are the angles
between the sides (computed using the cosine law — lines 80 to 87), and row 7 is the area of the
triangle (computed using the built-in MATLAB function polyarea() — line 90). The interior
angle ratio is computed from the maximum and minimum interior angles (line 93). Some
summary statistics regarding the entire triangle network are saved into the matrix Q; the area-
weighted angle ratio average and median are computed, as wells as the average and median
triangle size are computed (lines 95 to 109).

After looping over all possible locations, the matrix Q contains different average results for each
point in the domain that is inside the active MODFLOW flow domain. The results for the
existing Culebra network with (Figure 3-5, Figure 3-6, and Figure 3-7) and without SNL-6 and
SNL-15 (Figure 3-7, Figure 3-8, and Figure 3-9) were plotted from the geom matrix, for the case
with no additional wells.

These summarizing results (Q matrix) are saved to ASCII file (lines 116 to 123 — see files in
analysis\triangle_metric\output\ directory on CD) and plotted to make color contour
maps shown in Figure 3-10, and Figure 3-11.
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The MATLAB script redwhitemap.m (see Section 8.3.2) is used by the
triangles_add_one.m script just described, to create a color legend corresponding to blue
being negative, red being positive and white being zero, based on a vector of data passed. This
script only is used for creating a colormap for plotting figures in MATLAB, but is included here
for completeness.

3.7.2. Triangles: removal steel-cased wells

The triangles_remove one.m MATLAB script (Section 8.3.3) does much of the same that
the triangles_add_one.m script in the previous section did, but it also computes things
related to the freshwater head gradient across triangles between wells.

Similar to the previous triangle metric script, the first portion of the script loads data from file
(lines 8 to 34), but here a series of nested for loops are used to find the wells on the convex hull
(for marking them in the bar chart figures — lines 38 to 46). The main loop of the script re-
computes the metrics related to the triangle, removing a different steel-cased well each time
through the loop. In addition to geometry metrics related to the triangles (geom and Q matrices,
line 144 through 176), the gradient defined by the freshwater head observed at the three corners
of the triangles is also computed using Cramer’s rule and saved into the coeff matrix (lines 98
to 122).

The gradient estimates are individual values for each triangle in the network (piecewise
constant), but to compare the effects of removing a well from the network, which will result in a
different network, the values are copied onto a 100 m square grid at each step (lines 125 to 136).
This is done by cycling through the triangles in the network (typically about 30 or 40 triangles),
each time selecting the cells from the 100 m square grid that are inside the triangle (using
inpolygon()), assigning the gradient from the triangle to all the cells that fall inside it. The
rest of the script is used to plot figures for the analysis report (Figure 3-12, Figure 3-13, and
Figure 3-14, and the figures in Section 9.0), using the data computed in the main loop.

The triangles_remove two.m MATLAB script does essentially the same thing as the
remove-one script, but takes a list of four “likely to be P&Aed” wells, removing each of these
first, then doing the remove-one-well process outlined above. The matrices resulting from this
script are made into Table 3-2 and Table 3-3.
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4.0 Model Correlation Analysis

In addition to the variance reduction and local gradient estimator approaches to monitoring
network design, a third approach is used here to incorporate uncertainty captured in the
performance assessment (PA) simulation into the monitoring network design. These calculations
also incorporate recent updates in the geologic conceptual model and the influence of these
updates on the spatial distribution of transmissivity within the Culebra. These recent updates in
the geologic conceptual model have been used to produce the base transmissivity fields used in
this study and are summarized in the Culebra T-fields summary report (Kuhlman, 2010b).

4.1. Background

The goal of this portion of the report is to include a third independent metric in the overall
optimization that specifically addresses the PA monitoring network design goal of providing
head and aquifer transmissivity data for defensible calibration of PA models. Additionally, the
approach developed here specifically incorporates PA information in the form of groundwater
travel times from the repository area to the boundaries of the WIPP LWB. This approach makes
use of the existing ensemble of calibrated transmissivity fields (Hart et al., 2009) such that no
additional groundwater flow and/or transport modeling is necessary.

4.2. Calculating Sensitivity Coefficients

The sensitivity of model outputs to changes in model inputs arises in the calibration, uncertainty
analysis, and cost optimization of both analytic and numerical models. A model can range in
complexity from a linear analytic expression to a complex numerical model. In general, a
sensitivity coefficient, S, is calculated as the partial derivative of a model output with respect to
each model input parameter:

=20 (10)

¥ ap

o,
where S; is the sensitivity coefficient of the model prediction, O, at the i™ observation point to
the jth model parameter, P;. S; is an nxm matrix (i.e., the Jacobian matrix) with the number of
rows equal to the number of model parameters (n) and the number of columns equal to the
number of observations (m) (Zheng and Bennett, 2002). S;; is often given in a normalized or
dimensionless form, through appropriate scaling factors; this matrix often plays a key role in
parameter estimation techniques such as in the conjugate gradient, Newton iteration, or
Levenberg-Marquard algorithms.

4.2.1. Sensitivity Equation Method

The expression governing the process which controls how parameters (P)) are related to outputs
(O)) can sometimes be differentiated using calculus. This method is usually only applicable to
simple lumped-parameter or analytic equation models. Although this approach is quite problem-
specific, it leads to closed-form expressions for the sensitivity matrix. The form of the
sensitivity equations often provides insight to the underlying process without needing to evaluate
the problem for specific parameter values. Because the PA model considered here is an
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ensemble of calibrated MODFLOW models with irregular distribution of parameters and
boundary conditions, this analytic sensitivity equation approach is infeasible.

4.2.2. Perturbation Approach

The derivative in Equation (10) can be approximated using finite differences. A small
perturbation is made in a single model input (4P)), leading to a set of perturbed model outputs
which are differenced with model predictions from a base case O; (P;), and normalized by the
change in the parameter.

_20,_0lp+4p)-0[p)
VP AP,

J

(11)

This is the most generally-applicable and widely-used approach to estimating sensitivity
coefficients; for example, this is the approach taken in inverse-modeling codes such as PEST
(Doherty, 2002).

If a model has n parameters for which sensitivity information is desired, then at least n+1 model
runs must be performed to compute the one-sided finite difference given in Equation (11). For
higher-order accuracy, often 2n+1 model runs can be used to estimate derivatives via centered
finite differences. For large highly-parameterized models (i.., thousands of parameters or
more), the perturbation approach often leads to unmanageably large computing demands. For
the inverse problem, there are many approaches for either reducing the number of parameters
which require derivatives; e.g., pilot points and singular value decomposition are both methods
used with PEST in the WIPP Culebra PA model calibration (Hart et al., 2009).

When working with an ensemble of independent calibrated models, S;; is computed separately for
each realization, and then ensemble sensitivity can be computed by appropriately averaging
across the realizations. Although this approach was used to calibrate the PA models and the
resulting PEST-computed sensitivity matrices (i.e., Jacobians) are saved in CVS, this approach
was not used due to two complications. First, the sensitivities in the MODFLOW model are
computed between observed heads and pilot point values (not particle travel times to individual
parameter values in the model grid). Second, these sensitivity matrices were only computed at
the beginning of the calibration, due to the use of the singular value decomposition, which works
with “super pilot points” rather than the pilot points themselves.

4.2.3. Adjoint Sensitivity Approach

An alternate approach to computing S, using finite differences is the use of the adjoint sensitivity
equations, where a system of adjoint equations are derived (similar in form to the diffusion
equation) and solved using the same model grid with modified boundary conditions and source
terms. The sensitivity coefficients are related directly to the adjoint variable, rather than the
main variable (typically head or pressure). Although this method is very problem-specific, it has
the advantage of making the number of model runs needed to compute S; proportional to the
number of model predictions or observations (m), rather than the number of model parameters
(n) (see e.g., Sykes et al., (1985) (1985)). The adjoint approach was used at WIPP during the
CCA, in the GRASPII inverse modeling code (see e.g., RamaRao and Reeves (1990)).
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The ensemble correlation approach requires multiple calibrated model realizations, and therefore
captures some of the uncertainty captured by the ensemble of models. This is in contrast with
the perturbation or adjoint sensitivity approaches which take one calibrated model and use it to
estimate parameter sensitivity (essentially assuming a linear approximation of the actual model).
To capture the uncertainty given by the ensemble, the perturbation sensitivity approach would
have to be performed for each realization of the ensemble — a computationally exasperating
process (tens of thousands of individual parameters in each of hundreds of models, with
potentially long run-times for each forward run).

McKenna (2004) compared sensitivity coefficients computed using the sampling correlation
approach for 100 realizations to those computed with the perturbation sensitivity approach for a
single realization, and found that they were similarly but not identically distributed. Although in
the sampling-based approach it is not possible to completely differentiate between true and
spurious correlations (partial correlation does account for some of this in a statistical sense), the
approach is used here based on its computational feasibility and the availability of the 100
realizations.

As opposed to Sy, which is the slope of the linearized relationship between model inputs and
outputs, the correlation coefficient, p, is a measure of the quality of the linear relationship
between two variables (regardless of slope). The correlation coefficient is given by

1
n ?=1(Pi - mP)(Oi - mO) __ Opo (12)

Op0p 0p0p

Pro =

Where o5 is the variance of the parameter P, mp and my are the means of P and O respectively,
oo is the variance of the observation O, and op is the covariance between P and O. p indicates
the portion of the variance of O which is explained by the variance in P, through an assumed
linear relationship (e.g., see Isaaks and Srivastava, (1989), Chapter 3).

When there is more than one free parameter varied at a time, partial correlation is defined as the
correlation attributable to a single variable, statistically holding others constant (e.g., see Helton,
et al., (2006) §6.4). Partial correlation is demonstrated for the case where a third variable Z is
introduced into the problem illustrated in Equation (12);

Ppo — PpzPoz
(1-p3)(1 = P5z)
where the variables to the right of the dot in the subscript are statistically held constant. This
expression reduces the correlation between two variables, by the amount attributed to the
spurious correlation between both variables and a third one (here Z). When dealing with more
than three variables, there are two primary approaches to computing partial correlation.

Conceptually, the simplest is a recursive definition, which is an extension of Equation (13) (e.g.,
(Spiegel and Stephens, 1999), chapter 15),

Ppoz = (13)
J

Ppro.z — Ppr.zPov.z _ Proy — PpzyPozy
1- ng.z)(l - Pcz)y.z) \/(1 - sz.y)(l - Pcz)z.y)

Ppoyz = \/ (14)
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but this recursive approach becomes difficult to compute as the number of variables gets above 4

or 5 (being impossible for hundreds or thousands of variables as in the case for the WIPP model).

An alternate definition of Equation (14), in terms of correlation matrices is

Pij.(k#i,j) = (15)
j.(k#i)) fa; a;; a;

where p is the partial correlation of variables i and j, accounting for the effects of all other

ij.(k#i,5)
variables; a; is the matrix inverse of the symmetric correlation matrix C, which in the 3x3 case is
1 piz pi3
C=-p21 1 p2s (16)
P31 P32 1

Often C can be poorly scaled and computing partial correlation due to many variables can be
numerically unstable, as C can be nearly singular and therefore has an ill-defined inverse. The
COTS statistical software R includes an implementation (cor2pcor) which computes partial
correlation of systems with many variables, utilizing a numerically stable pseudo-inverse
approach, automatically scaling the matrices to improve stability. Even though the improved
numerical approaches help, the matrix-based approach is intractable for very large problems,
because a n xn matrix must be made (where n is the number of active parameters, here over
50,000) in memory; even for single-precision variables this is on the order of a 30-gigabyte
matrix. A comparison is made between regular and partial correlation in the results section,
using only the area immediately surrounding the WIPP site.

4.3. Model Correlation Results

The calibration of the 100 7 fields to steady-state and transient heads did not incorporate the
groundwater travel time as an estimation variable. The travel time from the center of the WIPP
panels (also the location of the Culebra well C-2737) to the WIPP LWB was a separate
calculation done after the T fields were calibrated; see Figure 4-2 for the travel times and Figure
4-3 for the particle tracks across all 100 realizations.
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Figure 4-2. Travel times to WIPP LWB for conservative particle (non-dispersive, reactive, with no decay) for
100 realizations used in correlation analysis

The sampling-based sensitivity approach was applied to the results of the 100 calibrated T fields
and used to determine the sensitivity of the groundwater travel time to the WIPP boundary with
respect to the simulated heads, and effective hydraulic conductivity Kesr (the geometric mean of
the x- and y-direction hydraulic conductivities),

(17)

where 4 is the horizontal hydraulic conductivity anisotropy and K,=K.4. Transmissivity (7) and
hydraulic conductivity (K) differ in the Culebra MODFLOW model by a constant thickness,
which does not affect correlation calculations. The distribution of K, including the mean and
standard deviation, across all 100 realizations is plotted in Figure 4-4. The results of these
calculations for the K¢ are shown in Figure 4-5. Nearly all the wells shown in Figure 4-5 were

used in the calibration of the K¢ parameter fields (except AEC-7 — see discussion in Section
L.5).
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4.4. Remove One Steel Well

The results of the sampling-based correlation analysis are sampled at locations across the model
domain, corresponding to the locations of existing steel-cased wells. The results of this are given
in Table 4-1, where the numbers are simply the numerical values sampled from the images of
correlation results shown in Figure 4-5 and Figure 4-8.

Monitoring Network Design Optimization

Table 4-1. Correlation-based analysis results at locations of steel-cased wells. A smaller rank number

indicates a higher correlation and therefore assumed importance.

p K lp Kl rank p head |p head| rank | avgrank
ERDA-9 | -2.989x107  2.989x107 1 -2.050x10"  2.050x107 2 1.5
H-3b2 | -9.670x102  9.670x10% 6 -1.936x10"  1.936x10" 3 45
WIPP-19 | -9.941x10%  9.941x102% 5 1.885x10"  1.885x10" 5 5
H-12 | 1.553x10"! 1.553x10" 3 -1.462x10""  1.462x10" 8 55
WIPP-11 1.502x107! 1.502x10" 4 -9.576x102  9.576x102% 9 6.5
WIPP-13 | 2.199x10"  2.199x10" 2 -6.001x102  6.001x102 11 | 65
WIPP-25 | -4.109x10%  4.109x102 13 2.250x10"  2.250x10" 1 7
USGS-4 | -5.631x10%  5.631x10% 11 -1.931x10"  1.931x10" 4 75
AEC-7 | 7.392x102  7.392x102 8 7.241x102 7241102 10 |9
H-11b4 | -5.339x10%  5.339x102 12 1.734x10"  1.734x10" 6 9
H-4b | 3.852x102%  3.852x102 14 | -1.627x10" 1.627x107" 7 10.5
H-5b | -7.394x102  7.394x10% 7 1.670x10*  1.670x10% 17 | 12
H-10c | 6.302x10%  6.302x10% 9 -1.243x107  1.243x102 16 | 125
H-17 | 5.662x10%  5.662x10% 10 3.295x102  3.295x10% 15 12.5
H-7b1 | -1.089x102 1.089x102% 16 5.448x102  5.448x10% 12 14
H-9¢c | -2.776x10%  2.776x107% 15 5.202x107%  5.202x10% 13 14
H-2b2 | 2.715%10%  2.715x10° 17 3.768x10% 3.768x102 14 | 15.5

The results in Table 4-1 are sorted by the average rank between the steel-cased wells for the K/
log travel time correlation (see Figure 4-5) and the head / log) travel time correlation (see
Figure 4-8). A smaller rank number indicates a higher relative correlation in the two cases.
Wells with large rank numbers are wells that are located in areas with less correlation between
model inputs and outputs.

4.5. Model Correlation Summary

Here, we approximate a true sensitivity analysis using a sampling-based correlation analysis.
These sampling-based correlation coefficients are consistent with, but different from, the average
sensitivities calculated as numerical derivatives, as was illustrated in (McKenna, 2004). The
advantage of this approach to approximating sensitivity is that it is computationally efficient.
The sampling-based sensitivity coefficients require an ensemble of calibrated K fields, which is
computationally burdensome, but they provide an integrated measure of correlation to all of the
calibrated K. fields at once. This approach captures the non-uniqueness of the K calibration
by using all 100 calibrated fields and also provides a measure of output sensitivity to the input
variables at all locations within the domain.

Application of the sampling-based sensitivity approach to the Culebra shows distinct regions of
higher and lower correlation to travel time with respect to both calibrated heads and K¢ For
travel time sensitivity with respect to heads, the regions of high and low sensitivity are broad and
fall mainly within and directly to the south of the WIPP site. Results of travel time sensitivity
with respect to K. show regions of high and low sensitivity that are considerably more

localized. The two regions with the greatest absolute correlation for both Kt and model-
predicted head are near the C-2737 release point, between the release point and the southern edge
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of the WIPP LWB, and immediately upstream (north) of the C-2737 release point. These
regions of high or low sensitivity can be identified and targeted for additional head monitoring
wells and measurements of Kg. Results of the spatial sensitivity calculations are combined with
results of other approaches to monitoring well optimization in the following section

4.6. Model Correlation Run Control Summary

4.6.1. Model file checkout and pre-processing run control (Linux)

The model inputs (transmissivity and anisotropy) and outputs (head) were checked out from the
Tfields and MiningMod CVS repositories that are accessible from the PA Linux cluster
(alice.sandia.gov). The same files exist for each calibrated model realization (see Table
4-2), and they exist in 100 subdirectories with the names rnnn, where nnn is a three-digit
number corresponding to the realization name (the numbers range from 001 to 999 and are
therefore non-contiguous). The Bash shell script checkout_model_data.sh (Section 8.4.1)
checks the required files out of CVS (lines 9, 18, 49, and 51), does some manipulation of the
directories to simplify the resulting directory structure (lines 30 through 44), and converts the
binary MODFLOW head files to ASCII arrays (line 67). Finally the entire file tree of input and
output files are zipped up to simplify transfer to Windows from Linux (see lines 72 to 75 —
located on the CD in the analysis\model correlation directory inside the

model files.zip archive).

Table 4-2. Model files from each calibrated MODFLOW realization

Model File Description

rnnn/modeled K field.mod calibrated transmissivity field for realization rrnn

rnnn/modeled A field mod calibrated anisotropy field for realization rrnn

rann/modeled head.hed model-generated steady-state head for realization rnnn

rnnn/dtrk.out particle tracking results for realization rnnn

empty file indicating if the realization originated in the Update or Update2 directories

rnnn/ {Update,Update2, } (potentially no file)

The Python script head bin2ascii.py (Section 8.4.2) is used on Linux to convert the binary
MODFLOW head files (saved as record-based Fortran unformatted files) to ASCII arrays, based
upon the knowledge of the type of data to be expected in the files. Lines 4 through 54 of this
Python script define the FortranFile() class which is used to encapsulate the functionality
needed to read the binary files. Two utility functions (reshapev2m() and floatmatsave())
are defined in lines 56 through 70. The structure of the MODFLOW binary head files are quite
simple; each files is comprised of a single header record and a single array of single-precision
head values unwrapped as a vector. The header record contains integers related to the size of the
model array subsequently saved, and the head array is saved after that. The Python script
reshapes the vector into an array and writes it to an ASCII file in floating point format (line 111).

4.6.2. Partial correlation analysis run control (Windows)

The utility Python script 1oad model data.py (Section 8.4.3) is called as a library from two
other Python scripts to load the 100 realizations of MODFLOW input and output files. This
script loops over the 100 rrnn subdirectories reading hydraulic conductivity, horizontal
anisotropy, travel time to the WIPP LWB, and the model-generated steady-state heads (see Table
4-2). The script then takes the log;o of the K, A and travel times, and defines a logical mask

Page 73 of 133




AP-111 Rev. 1 Monitoring Network Design Optimization

(wippmask) for addressing a subset of the model domain only including the WIPP LWB and a
buffer of cells surrounding it (lines 58 to 62).

Once the zip archive of ASCII model files is transferred to Windows, the analysis begins with
the Python script export_pcor inputs.py, (Section 8.4.4) which loads the results of the 100
realizations (importing the functionality from the 1oad model data.py script at line 2),
saving the results to two large matrices to be processed in R for partial correlation analysis. The
matrices saved include the travel time to the WIPP LWB (a single column) concatenate with the
head or K.q matrices from a region including the WIPP LWB and a 1,500-m buffer surrounding
the LWB, due to a limitation of the approach. A correlation matrix comprised of every model
parameter (or head) to every other parameter (or head) is made, the full 307x284=87,188 model
cells would result in a correlation matrix with 7,601,921,721 entries (over 56 gigabytes at double
precision). The smaller subset of model parameters (WIPP LWB is 64 100-m elements wide and
tall + a buffer of 15 elements on each side) results in a large correlation matrix that only has
78,092,569 entries (just under 596 megabytes at double precision). The R script
compute_partial correlations.R (Section 8.4.5) simply reads in the matrices saved by
the Python script, performs the partial correlation analysis using optimized and numerically
stable algorithms (a scaled pseudo-inverse, rather than the simpler — but numerically unstable —
matrix inverse), then writes the partial correlation between travel time to the WIPP LWB and
either Kegr or head in each model cell inside the area surrounding the WIPP site (the last column
of the resulting partial correlation matrix — see lines 12 and 19). Output from

export_pcor_ inputs.py and output from compute partial correlations.R are saved
on the CD, along with the intermediate files, in the

analysis\model correlation\output\ directory.

4.6.3. Correlation analysis run control (Windows)

The Python script spearman_rank coefficient.py (Section 8.4.6) also loads the model
data using the load model data.py module, and also loads the results of the partial
correlation calculation done in R (lines 31 to 39). In the loop from lines 41 to 62, the script
computes the head vs. travel time and K.g vs. travel time correlations across the 100 realizations
at each element in the model domain. The partial correlation results and standard correlation
results are then plotted in several forms for figures in the text (Figure 4-1, Figure 4-2, Figure 4-5,
Figure 4-6, Figure 4-8, and Figure 4-9), and saved as matrices for later analysis (files located on
CDin the analysis\model correlation\output) directory).
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5.0 Combining Approaches

This section discusses the combination of the three approaches towards quantifying both the
quality of proposed monitoring well locations, and the relative importance of existing steel-cased
well locations

5.1. One Additional Monitoring Location

Three different approaches to identifying optimal additional monitoring well locations have been
computed. In the case of the geostatistical estimation variance reduction approach, the change in
the estimation variance can be computed after adding more wells. However, the results of this
approach leads to many locations with high propensity to reduce overall estimation variance and
the results of this approach do not uniquely identify one or even a handful of optimal locations
for additional wells. To some extent, combining all three of the approaches into a single map
reduces this non-uniqueness. Here, the three approaches are combined to provide a combined
score, S, that identifies the best locations for new wells. The higher the value of the score is, the
better that location is for a new well.

The combined score is the sum of the three different fields calculated in the three monitoring
approaches scaled appropriately and combined as

(18)

SC=O'éK+Ar+7;

The three components of S, are the relative change in the average ordinary kriging variance,

o’ o, the change in the average triangle interior angle ratio, and the absolute value of the
correlation coefficient between travel time to the WIPP boundary and either the estimated
transmissivity or head, r;, each compared relative to the 2007 network. The absolute value of the
rank correlation coefficient is used since both positive and negative correlations are of equal
importance for locating new monitoring wells. The triangle interior angle ratio is handled
differently, because for that metric, negative values are poor places to locate wells. Figure 5-1
shows histograms of the fields that contribute to S..

Four different combinations of the input fields are considered, requiring six total input fields.
The resulting fields will be comprised of the following four cases:

1. A mean kriging variance + A mean triangle angle ratio + p K,

2. A mean kriging variance + A mean triangle angle ratio + p head,

3. A median kriging variance + A median triangle angle ratio + p Ky,
4. A median kriging variance + A median triangle angle ratio + p head;

either the correlation of travel times to head or Keff are used, and either the mean or median
relative kriging and triangle metrics are used.
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Figure 5-1. Histograms of each component of S, before applying scaling.

The three metrics in S, are already unitless, as reported in their individual previous sections. The
results are rescaled here to give them common ranges (a width of unity). The rescaling is
accomplished as

oo —min(o g, ) A, r,| —min(r, ) (1)
° max(c};)-min(c},) max(4,)-min(4,) max(r,|)—min(r,|)

where the max () and min () operators define the maximum and minimum values of the
different components of the combined score across the entire calculation domain. The triangle
metric is handled differently than the others, as it is not shifted to a zero-based origin (no “—
min(4,)” in the numerator); this was done because the negative values of change with respect to
the interior angle metric indicate that adding a well at a given location would degrade the quality
of the overall average well network.

Histograms of the scaled components to S, are plotted in Figure 5-2. The top row of plots for the
relative change in the kriging variance are simply scaled to the [0,1] interval (they already had a
distribution with a minimum value of zero). These distributions are slightly skewed towards 0.0,
more so for the change in the median kriging variance. In the second row of plots for the relative
change in the triangle angle ratio are scaled to a unit width interval, but they are not shifted (now
covering approximately the [-0.6,0.4] interval). These distributions are centrally distributed
about a non-zero negative value. The absolute value of the correlation coefficient distribution
(bottom row) is now strongly skewed towards 0.0, after taking the absolute value (the original
distribution in Figure 5-1 was roughly symmetric about 0.0).
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Figure 5-2. Histograms of each component of S,, after applying scaling

Other than the scaling, one additional change is made to the fields for the mean and median
kriging variance. These fields are computed on a two times coarser grid than the triangle angle
ratio or the correlation coefficients. The use of this multiplier is to accommodate the long run
times for the kriging calculations. The fields resulting from the kriging calculation are copied
onto the finer mesh by copying each of the kriging matrix cell’s values (without averaging) into
the four cells covering the same area in the finer grid. This process is similar to how values were
copied from the MODFLOW to SECOTP2D modeling grids in the CRA 2009 PABC
calculations (see Kuhlman, (2010a), Appendix A, §1.7).

5.1.1. Results

The theoretical minimum and maximum combined score values for any location in any of the
four cases are -0.6 and 2.4 respectively. An image map of the combined score value for case 1 is
shown in Figure 5-3. The resulting field is light colored (low score) in most areas surrounding
the WIPP LWB and near monitoring wells in the 2007 well network. The resulting image for
case 2 is shown in Figure 5-4. The resulting distribution of the case 2 results has lower low
values (some negative values, indicated in yellow), and the dark blue location, indicating a good
possible location, are more localized than for the means of the same variables (Figure 5-3).
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5.2. Remove One Steel Well

The results of the remove-one-well analyses from the previous sections were plotted together in
Figure 5-7. Symbols are scaled according to numerical rank, small rank number correlating to

small symbol size.
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Figure 5-7. Composite plot of steel-cased well rankings from previous sections. Large symbols correspond to
greater relative importance for each of the three measures.

Figure 5-7 shows the trend in the kriging variance reduction (filled red circles), where wells
inside the WIPP LWB typically have a poor rank, and therefore removing them will have little
impact on the kriging variance averaged across the entire model domain (H-11b4 being a slight

exception). The results of the triangle

gradient estimator maximization process (blue crosses)

shows the wells indicated as being most valuable are located in the central and south-east portion
of the domain. Aside from the locations inside the WIPP LWB, the wells with high rank
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regarding the gradient estimator approach are steel wells that are not very near fiberglass-cased
wells (H-10c, H-9¢, H-12, H-4b, H-5b and AEC-7). The model correlation results are shown as
green X’s, with the distribution of important steel-cased wells being a more scattered about the
MODFLOW model area. These results do not depend on current well locations, aside from the
fact that the current wells were used to calibrate the model. ERDA-9 and H-3b2 are in locations
where head and Keff are correlated to the model predicted travel time to the WIPP LWB, as
would generally be expected. USGS-4, H-12, WIPP-11 and WIPP-25 also have high ranks
based on correlation of model results, which are more difficult to explain. The high ranks of
these locations are likely due to spurious correlation between the data used in the correlation.

5.2.1. Summary

Three different approaches to monitoring network optimization were used to identify locations
where additional wells could improve the network. These three approaches identify: 1) locations
where additional wells will reduce the uncertainty in predicting head values at locations without
wells; 2) locations where an additional well will allow for maximum improvement in the ability
of the existing monitoring well network to identify changes in the magnitude and orientation of
the hydraulic gradient by maximizing the quality of local gradient estimators that can be created;
and 3) locations where the performance assessment measure of advective travel time to the WIPP
boundary is most correlated to the value of head or transmissivity.

These three approaches to monitoring network design all attempt to optimize the network with
respect to different objectives. Combining all three of these approaches is done by rescaling
each of the raw maps of estimation variance, additional local gradient estimators and sensitivity
to have a range (minimum to maximum) of 1.0 and to be unitless. The final combined score
maps show the best places to locate additional wells to meet all three objectives when each of the
three objectives is given equal weight. The higher the combined score is, the better the location
is for a new well. The final combined maps are similar with some minor, but important
differences depending on whether or not sensitivity with respect to head or K. is included in the
combined score.

5.3. Method Combination Run Control

The Python script combine plot methods.py (Section 8.5) loads in the results of the
previous three sections, normalizing them to the range 0 <x < 1 and summing them up to create
composite plots (Figure 5-3 through Figure 5-6) illustrating the optimum location for additional
monitoring wells. Histograms of each component before (Figure 5-1) and after (Figure 5-2)
scaling are also made for assessing the relative effect each of the three components has on the
overall result.
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6.0 Conclusions

A set of measurements made in 42 head monitoring wells in the Culebra within and surrounding
the WIPP from 2007 were used in this analysis. This set of observations mostly coincided with
the freshwater heads used for steady-state calibration of the CRA 2009 PABC MODFLOW
model. This head-monitoring network provided the input data for three different approaches to
optimizing the monitoring well network. Optimization is interpreted broadly here to include
both the identification of new locations where wells could be added to the network to meet some
objective and also identification of existing wells that could be removed from the monitoring
network as they provide redundant information. The three different approaches to monitoring
network optimization examined here are: 1) geostatistical variance reduction; 2) local gradient
estimation using combinations of three wells; and 3) sampling-based spatial sensitivity
coefficients. In short, the gradient has not changed significantly since the 2004 analysis.

6.1. Summary of Calculations

Geostatistical variance reduction is a fairly common optimization approach (e.g., Rouhani,
(1985)) that exploits several properties of the kriging variance to identify new locations where a
well could be added to an existing monitoring network to provide the greatest reduction in
estimation variance. The same approach can be used to determine existing wells that, upon
removal from the monitoring network, provide the smallest increase in the overall estimation
variance. Kriging provides an ideal approach to these calculations as the estimation variance
calculated through kriging is only a function of the data configuration and not the data values.
Therefore, the estimation variance reduction/increase for the addition/removal of a new well can
be calculated prior to adding/removing that well from the network. This calculation assumes that
the variogram calculated for the head, or residual, values in the network does not change with the
addition/removal of a well.

Application of the geostatistical estimation variance calculations to the Culebra network shows
that there are many locations where a well can be added to the network that will produce a
maximum reduction in the average estimation variance. These locations are all outside of the
WIPP site boundaries and the majority of these locations are near the extremities of the
MODFLOW model domain. Adding new wells within the WIPP site boundary will not have a
significant impact on the estimation variance. The geostatistical estimation variance calculations
were also applied to the problem of determining which existing wells to remove from the
network. Results for this problem can easily be calculated; however, for removal of more than
one well at a time, it is necessary to know what combinations of wells need to be removed to
make the problem tractable. Four different base cases were run here and the results show that
simultaneous removal of WIPP-13 and another steel-cased well makes an insignificant change in
the estimation variance relative to the full 42-well network, while removal of either of other pairs
of steel-cased wells has a significant impact (Table 2-5). Averaged across the entire model
domain, the removal of wells USGS-4, H-9¢, H-10c and AEC-7 would have the largest effect
(Figure 2-14). Averaged across the WIPP LWB, removal of wells H-4b, H-5b, H-17 and H-7b1
would have the largest effect (Figure 2-16).

A Delaunay triangulation of the wells in the 2007 monitoring network provides a platform for
estimating the quality of triangles as gradient estimators. The interior angle ratio (max angle /
min angle) is used as a metric for quantifying the quality of a given arrangement of wells. Local
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gradient estimators were used to identify the best places to locate additional monitoring wells
and the existing wells that could be removed from the network with the smallest impact on the
ability of the network to estimate in the gradient.

Results of the calculations to identify locations for additional monitoring wells show that new
wells should be located outside of the WIPP site. Additional monitoring wells could optimally
be placed north and east of the WIPP LWB, or south between existing wells (Figure 3-10). The
well removal calculations were done by removing one well at a time from each of three base case
scenarios. Removal of wells in the western portion of the domain, outside the WIPP LWB, has
little effect on the quality of the network from the point of view of the triangular gradient
estimators (Table 3-1 and Figure 5-7). The removal of steel-cased wells in the southeast or
inside the WIPP LWB would have the largest effect on the overall network.

The third approach to monitoring network optimization explored in this report is that of using
model correlation to identify locations for new wells where some model output of interest (e.g.,
travel time) is most sensitive to the transmissivity or head at that location. These correlation
coefficients are calculated through a sampling-based technique across 100 calibrated K fields.
The sampling-based sensitivity coefficients are shown as a map of the sensitivity of the travel
time from the repository to the WIPP site boundary with respect to head and transmissivity
(Figure 4-5 and Figure 4-8). The results with respect to head show a smoothly varying
sensitivity field with large regions of positive and negative correlation between head and travel
time. The results with respect to Keg have much more localized regions of positive and negative
correlation with travel time being most sensitive to transmissivity at a location directly south of
the WIPP site boundary. It is noted that increased knowledge of the spatial variation of the
Culebra transmissivity is not a goal of the long-term monitoring network, but transmissivity is an
input to the T field calibration process used as input to further PA calculations.

As a final step, the results of the geostatistical estimation variance calculations, the local gradient
estimation and the spatial sensitivity coefficients were combined into two “combined score”
maps. These maps show, on a normalized scale, the best locations to locate new monitoring
wells. In general, these areas are outside of the WIPP site.

6.2. Reexamination of Monitoring Goals

The different purposes, goals and factors that must be taken into account in the design of the
Culebra long-term monitoring network were stated in Section 1.2. These goals come from a
variety of sources, mainly the state and federal regulatory bodies with WIPP oversight and the
ability of the network to provide needed inputs to PA models. Practical factors impacting
network design require that the total number of wells in the monitoring network be minimized
and that certain wells be retained in the network. The monitoring network should also serve as a
vehicle to provide new information to the hydrologic and geologic conceptual models.

The first monitoring network goal is to allow for determination of the direction and rate of
groundwater flow across the WIPP site. Triangular gradient estimators were developed to meet
this goal (Section 3.0). Independently obtained head measurements cannot by themselves
determine the direction and magnitude of the hydraulic gradient. For a confined aquifer with a
mainly two-dimensional flow pattern, head measurements at three separate locations are
necessary to determine the orientation and magnitude of the gradient. Small equilateral triangles
are typically the best for estimating gradients over an area from point head measurements,
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assuming the observed heads result in a gradient large enough to measure over the ambient noise
in the system.

The second monitoring goal is to provide data needed to infer causes of changes in water levels.
Detecting water level change can be done in a single well and an implicit requirement to meet
this goal is that there are enough wells in key locations both within and around the WIPP site to
detect any water level changes. Checking for the adequate distribution of wells in and around
the WIPP site is accomplished using a geostatistical variance reduction approach (Section 2.0).
These calculations identify where additional wells are needed and which existing wells can be
removed from the network. After a change in water level is detected, the cause of that change
must be inferred. There must be enough wells in the proper configuration to infer the cause of a
change. The geostatistical variance reduction and three-point estimator approaches to
monitoring network design provide networks that maintain enough well density with the proper
configurations to infer causes of changes.

The third goal is that the monitoring network must provide spatially distributed head data
adequate to allow both defensible boundary conditions to be inferred for Culebra flow models
and defensible calibration of those models. This goal is related to the previous one in that a
network that provides enough wells with the spatial distribution and configuration to detect and
infer causes of changes in water levels should also provide the data necessary to infer boundary
conditions and calibrate Culebra flow models. Therefore both the geostatistical variance
reduction and the gradient estimator approaches and the data gaps and redundancies that they
identify apply to this goal as well. Additionally, a third approach to monitoring network design
based on model correlation analysis was developed to explicitly incorporate the results of
calibrated groundwater flow models directly into the monitoring network design. The set of
calibrated groundwater models used as the basis of this third approach incorporates the latest
geologic and hydrologic conceptual models. This approach to monitoring network design
defines areas along the boundaries and within the groundwater flow model where the model
results are most sensitive to the calibrated values of head and transmissivity. Regions of high
sensitivity are targeted for future well locations.

In addition to meeting these three goals, a number of other factors were considered in the design
of the monitoring network. These included preserving the locations of existing fiberglass and
steel-cased wells, identifying wells that provide redundant information, incorporating current
hydrologic and geologic conceptual models and identifying locations where questions in the
conceptual models can be addressed and/or locations where the groundwater flow models used in
PA calculations are correlated to the local values of head and transmissivity. Both the
geostatistically-based variance reduction approach and the three-point estimator approach to
monitoring network design explicitly considered minimization of the number of wells in the
monitoring network through removal of existing wells. Tradeoffs between the minimization of
the wells in the network and the ability of the network to provide information on changes in
heads were examined. The monitoring network design done here was focused on optimization
approaches that are readily quantified into different objective functions. Meeting certain, less
easily quantified, factors such as locations where conceptual model questions can be addressed is
more difficult and the monitoring networks designed here did not explicitly address this factor.

The results of the calculations done to meet the monitoring goals and the other factors are
combined into a series of maps (Figure 5-3 through Figure 5-6) that show the best locations for
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adding wells to the monitoring network. A map has also been created showing which existing
steel-cased wells are the most and least important to maintain within the monitoring network
(Figure 5-7).

Page 87 of 133




7.0

AP-111 Rev. 1 Monitoring Network Design Optimization

Bibliography

American Society of Civil Engineers, 1990. Review of Geostatistics in Geohydrology. Journal of
Hydraulic Engineering, 116(5), pp.612-58.

Armstrong, M., 1984. Problems with Universal Kriging. Mathematical Geology, 16(1), pp.101-
08.

Bazaraa, M.S., Sherali, H.D. and Shetty, C.M., 1993. Nonlinear programming. 2nd ed. New
York: John Wiley and Sons.

Chiles, J.-P. and Delfiner, P., 1999. Geostatistics: Modeling Spatial Uncertainty. New York:
Wiley Interscience.

Cole, B.E. and Silliman, S.E., 1996. Estimating the Horizonatal Gradient in Heterogeneous
Unconfined Aquifers: Comparison of Three-Point Schemes. Ground Water Monitoring &
Remediation, 16(2), pp.84-91.

Conover, W.J., 1980. Practical Nonparametric Statistics. 2nd ed. New York: John Wiley and
Sons.

Conwell, P.M., Silliman, S.E. and Zheng, L., 1997. Design of a Piezometer Network for the
Estimation of the Sample Variogram of the Hydrualic Gradient: The Role of the Instrument.
Water Resources Research, 33(11), pp.2489-94.

Deutsch, C.V. and Journel, A.G., 1998. GSLIB: Geostatistical Software Library and User's
Guide. 2nd ed. New York: Oxford University Press.

DOE, 2009. Waste Isolation Pilot Plant Groundwater Protection Program Plan. Carlsbad, NM.
DOE/WIPP-06-3339,

Doherty, J., 2000. PEST Manual. Brisbane, Australia: Watermark Numerical Computing.

Goovaerts, P., 1998. Geostatistics for Natural Resources Evaluation. New York: Oxford
University Press.

Hart, D.B., 2010. WIPP PA Validation Document for MODFLOW-2000 Version 1.6: addenda
for direct solver. Carlsbad, NM: Sandia National Laboratories. ERMS 552422,

Hart, D.B., Beauheim, R.L. and McKenna, S.A., 2009. Analysis Report for Task 7 of AP-114:
Calibration of Culebra Transmissivity Fields. Carlsbad, NM: Sandia National Laboratories.
ERMS 552391.

Hart, D.B., Holt, R M. and McKenna, S.A., 2008. Analysis Report for Task 5 of AP-114:
Generation of Revised Base Transmissivity Fields. Carlsbad, NM: Sandia National Laboratories.
ERMS 549597.

Helton, J.C., Johnson, J.D., Sallaberry, C.J. and Storlie, C.B., 2006. Survey of Sampling-Based
Methods for Uncertainty and Sensitivity Analysis. Albuquerque, NM: Sandia National
Laboratories. SAND2006-2901.

Isaaks, E.H. and Srivastava, R.M., 1989. An Introduction to Applied Geostatistics. New York:
Oxford University Press.

Page 88 of 133




AP-111 Rev. 1 Monitoring Network Design Optimization

Johnson, P.B., 2009. Potentiometric Surface, Adjusted to Equivalent Freshwater Heads, of the
Culebra Dolomite Member of the Rustler Formation near the WIPP Site. Carlsbad, NM: Sandia
National Laboratories. ERMS 548162.

Kitanidis, P.K., 1997. Introduction to Geostatistics: Applications in Hydrogeology. New York:
Cambridge University Press.

Kuhlman, K.L., 2008. Analysis Plan for Optimization and Minimization of the Culebra
Monitoring network for the WIPP, AP-111 Revision 1. Carlsbad, NM: Sandia National
Laboratories.

Kuhlman, K.L., 2010a. Analysis Report for the CRA-2009 PABC Culebra Flow and Transport
Calculations. Carlsbad, NM: Sandia National Laboratories. ERMS 552951.

Kuhlman, K.L., 2010b. Development of Culebra T Fields for CRA 2009 PABC. Carlsbad, NM:
Sandia National Laboratories. ERMS 553276.

McKenna, S.A., 2004. Analysis Report AP-111, Culebra Water Level Monitoring Network
Design. Carlsbad, NM: Sandia National Laboratories. ERMS 540477.

McKenna, S.A. and Wahi, A., 2006. Local Hydraulic Gradent Estimator Analysis of Long-Term
Monitoring Networks. Ground Water, 44(5), pp.723-31.

Meigs, L.C. et al., eds., 2000. Interpretation of Tracer Tests Performed in the Culebra Dolomite
at the Waste Isolation Pilot Plant Site. Carlsbad, NM: Sandia National Laboratories. SAND97-
3109.

Menke, W., 1984. Geophysical Data Analysis: Discrete Inverse Theory. 1st ed.

R Development Team, 2009. R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing.

RamaRao, B.S. and Reeves, M., 1990. Theory and Verification for the GRASP 11 Code for
Adjoint-Sensitivity Analysis of Steady-State and Transient Groundwater Flow. Albuquerque,
NM: Sandia National Laboratories. SAND89-7143.

Rouhani, S., 1985. Variance Reduction Analysis. Water Resources Research, 21(6), pp.837-46.

Silliman, S.E. and Frost, C., 1998. Monitoring Hydraulic Gradient Using Three-Point Estimator.
Journal of Environmental Engineering, 124(6), pp.517-23.

Silliman, S.E. and Mantz, G., 2000. The Effect of Measurement Error on Estimating the
Hydraulic Gradient in Three Dimensions. Ground Water, 38(1), pp.114-20.

Spiegel, M.R. and Stephens, L.J., 1999. Theory and Problems of Statistics. 3rd ed. McGraw-Hill.

Sykes, J.F., Wilson, J.L. and Andrews, R.W., 1985. Sensitivity Analysis for Steady-State
Groundwater Flow Using Adjoint Operators. Water Resources Research, 21(3), pp.359-71.

Tuckfield, R.C., Shine, E.P., Hiergesell, R.A., Denham, M.E., Reboul, S. and Beardsley, C.,
2001. Using Geosceince and Geostatistics to Optimize Groudnwater Monitoring Networks at the
Savannah River Site. WSRC-MS-2001-00145.

Page 89 of 133




AP-111 Rev. 1 Monitoring Network Design Optimization

U.S. EPA, 1996. Title 40 CFR Part 194: Criteria for the Certification and Recertification of the
Waste. pp.5223-45.

U.S, n.d.

Warrick, A.W. and Myers, D.E., 1984. Optimization of sampling locations for variogram
calculations. Water Resources Research, 23(3), pp.496-500. '

Zheng, C. and Bennett, G.D., 2002. Applied Contaminant Transport Modeling. 2nd ed. Wiley
Interscience.

Page 90 of 133




AP-111 Rev. 1 Monitoring Network Design Optimization

8.0 Run Control Script Listings

This appendix lists the source code for the scripts written for and used in this analysis report, and
documents them to allow their reasonable verification and future use, according to NP 19-1. The
scripts listed in this section neither model physical phenomena nor solve differential equations
that model physical phenomena. Rather they are utility codes that process inputs and summarize
outputs for other modeling codes (i.e., KT3D). The scripts are heavily commented (green text) to
allow the flow of the execution to be easily followed.

8.1. Listing of Files Included on CD

The following directory listing (Table 8-1) corresponds to the directory tree given after it in
Figure 8-1.

Ei (3 report_d
¥ 2 analysis
) combine_3_methods
& common_date
&) common_programs
& &3 kriging
B £ kriging_add_weli
0 output
E @ lriging_remove_steel
) output
E {2 model_correlation
D linux
© output
1 § model_files.zip
£ £ trizngle_metric
& output
2 2 report
& & figures
2 01_intro
£ 02_kriging
3 03_triangles
L 04_model_correlation
3 05_ocombine_3_methods

Figure 8-1. Directory Tree of CD

Table 8-1. CD Directory listing

C:\report_CD>dir /S /TC
Volume in drive C is DriveC
Volume Serial Number is 542A-10F7

Directory of C:\report CD

04/10/2010 10:50 AM <DIR>
04/10/2010 10:50 AM <DIR> ..
04/07/2010 12:42 PM <DIR> analysis
04/07/2010 12:42 PM <DIR> report

0 File(s) 0 bytes

Directory of C:\report_ CD\analysis

04/07/2010 12:42 PM <DIR>
04/07/2010 12:42 PM <DIR>

04/07/2010 12:51 PM <DIR> combine 3 methods
04/07/2010 12:44 PM <DIR> common_data
04/07/2010 12:50 PM <DIR> common_programs
04/07/2010 12:43 PM <DIR> kriging
04/07/2010 12:43 PM <DIR> model correlation
04/07/2010 12:43 PM <DIR> triangle metric

0 File(s) 0 bytes

Directory of C:\report CD\analysis\combine 3 methods

04/07/2010 12:51 PM <DIR>
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04/07/2010 12:51 PM <DIR>
04/11/2010 12:10 PM
04/11/2010 04:11 PM

2 File(s)

04/07/2010 12:44 PM <DIR>
04/07/2010 12:44 PM <DIR>
04/10/2010 01:46 PM
04/10/2010 01l:46 PM
04/10/2010 01:46 PM
04/10/2010 01l:46 PM
04/10/2010 01:46 PM
04/10/2010 01:46 PM
04/10/2010 01:46 PM
04/10/2010 01l:46 PM
04/10/2010 01:46 PM
04/10/2010 01:46 PM
04/10/2010 01:46 PM
04/10/2010 01:46 PM
04/10/2010 01:46 PM
04/10/2010 01:46 PM
04/10/2010 01:46 PM
04/10/2010 01:46 PM
04/10/2010 01l:46 PM
04/10/2010 01:46 PM
04/10/2010 01:46 PM
04/10/2010 01:46 PM
20 File(s)

04/07/2010 12:50 PM <DIR>
04/07/2010 12:50 PM <DIR>
04/07/2010 12:45 PM
04/07/2010 12:50 PM

2 File(s)

04/07/2010 12:43 PM <DIR>

04/07/2010 12:43 PM <DIR>

04/07/2010 12:49 PM <DIR>

04/07/2010 12:50 PM <DIR>
0 File(s)

04/07/2010 12:49 PM <DIR>
04/07/2010 12:49 PM <DIR>
04/07/2010 12:52 PM
04/07/2010 12:44 PM
04/07/2010 12:45 PM
04/10/2010 01:47 PM <DIR>
04/07/2010 12:46 PM
4 File(s)

04/10/2010 01:47 PM <DIR>
04/10/2010 01:47 PM <DIR>
04/10/2010 01:47 PM
04/10/2010 01:47 PM
04/10/2010 01:47 PM
04/10/2010 01:47 PM
04/10/2010 01:47 PM
04/10/2010 01:47 PM

Table 8-1. CD Directory listing

Directory of C:\report_CD\analysis\common data

Directory of C:\report_CD\analysis\common_programs

Directory of C:\report CD\analysis\kriging

Directory of C:\report_ CD\analysis\kriging\kriging add well

Directory of C:\report CD\analysis\kriging\kriging add well\output

10,136 combine plot_methods.py
997 composite_remove_one_steel.dat
11,133 bytes

2007_well_data.dat
2007_well data_for_ trend.dat
2007_well data_for_triangles.dat
2007_well data_ with names.dat
2007_well names.dat
2007_well names_for_ triangles.dat
base data.dat
h2 200711.bln
h3 200711.bln
model_cells_100_inside_totalbdry.
model _cells 200_inside_totalbdry.
model cells_300_inside totalbdry.
model cells_400_inside totalbdry.
model cells_500_inside totalbdry.
model cells_600_inside totalbdry.
model domain_specs.dat
modflow_boundary.bln
no-flow-area-only.bln

8,532 total boundary.bln

105 wipp boundary.bln

2,116,946 bytes

1,776
1,823
1,606
2,210
379

331
1,694
5,415
5,799
1,395,622
350,196
156,766
87,626
56,668
40,040
64

105

189

dat
dat
dat
dat
dat
dat

157,184 KT3D.EXE
1,807 redwhitemap.m
158,991 bytes

kriging add_well
kriging remove_steel
0 bytes

generate_model cell masks.m
krig plus_one.py
kt3d_driver.bat
output

92 shared data.py
12,959 bytes

882
11,658
327

addone mod_results_corrcoef.dat
addone_mod_results_max.dat
addone _mod_results_mean.dat
addone _mod_results_median.dat
addone _mod_results_stdev.dat
addone wipp results corrcoef.dat

262,416
268,008
263,199
263,393
271,115
262,416
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Table 8-1. CD Directory listing

04/10/2010 01:47 PM 267,024 addone_wipp_ results_max.dat
04/10/2010 01:47 PM 266,686 addone_wipp results mean.dat
04/10/2010 01:47 PM 262,416 addone_wipp results_median.dat
04/10/2010 01:47 PM 268,976 addone_wipp results_stdev.dat
04/10/2010 01:47 PM 26 base_stats.out
04/11/2010 03:43 PM 196,812 X.dat
04/11/2010 03:42 PM 218,680 Y.dat

13 File(s) 3,071,167 bytes

Directory of C:\report_CD\analysis\kriging\kriging remove steel

04/07/2010 12:50 PM <DIR>
04/07/2010 12:50 PM <DIR>

04/07/2010 12:52 PM 1,696 krig_remove_one_steel.py
04/07/2010 12:52 PM 2,381 krig remove_two_steel.py
04/10/2010 01:47 PM <DIR> output
04/09/2010 11:58 AM 64,512 remove one well results2 2010.xls
04/09/2010 11:59 AM 164,352 remove two_well results3.xls

4 File(s) 232,941 bytes

Directory of C:\report CD\analysis\kriging\kriging remove_steel\output

04/10/2010 01:47 PM <DIR>

04/10/2010 01:47 PM <DIR> ..

04/10/2010 01:50 PM 1,671 model_results_one.dat

04/10/2010 01:48 PM 4,161 remove_two model.csv

04/10/2010 01:48 PM 4,131 remove_two_wipp.csv

04/10/2010 01:50 PM 1,604 wipp_results one.dat
4 File(s) 11,567 bytes

Directory of C:\report CD\analysis\model correlation

04/07/2010 12:43 PM <DIR>
04/07/2010 12:43 PM <DIR> .-
04/11/2010 02:02 PM 719 compute partial_ correlations.R
04/11/2010 01:57 PM 613 export pcor_inputs.py
04/11/2010 02:13 PM <DIR> linux
04/11/2010 01:58 PM 1,975 load_model_data.py
04/11/2010 11:51 AM 120,751,461 model_files.zip
04/11/2010 01:58 PM <DIR> ocutput
04/07/2010 12:55 PM 7,611 spearman_rank_ coefficient.py
5 File(s) 120,762,379 bytes

Directory of C:\report_CD\analysis\model_correlation\linux

04/11/2010 02:13 PM <DIR>
04/11/2010 02:13 PM <DIR>

04/11/2010 11:51 AM 2,169 checkout_model_data.sh
04/11/2010 11:51 AM 3,714 head bin2ascii.py
2 File(s) 5,883 bytes

Directory of C:\report_ CD\analysis\model correlation\output

04/11/2010 01:58 PM <DIR>
04/11/2010 01:58 PM <DIR>

04/11/2010 02:52 PM 1,084,380 corr_head vs_time.dat
04/11/2010 02:52 PM 1,072,200 corr keff vs time.dat
04/11/2010 01:58 PM 10,670,500 head_trav.dat
04/11/2010 02:12 PM 171,444 hpc.out
04/11/2010 03:59 PM 1,126,533 keff mean.out
04/11/2010 01:58 PM 9,786,982 keff trav.dat
04/11/2010 03:59 PM 1,046,563 keff var.out
04/11/2010 02:12 PM 185,720 kpc.out

8 File(s) 25,144,322 bytes

Directory of C:\report_CD\analysis\triangle metric

04/07/2010 12:43 PM <DIR>
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04/07/2010
04/10/2010
04/07/2010
04/07/2010
04/07/2010

04/10/2010
04/10/2010
04/10/2010
04/10/2010

04/07/2010
04/07/2010
04/09/2010

04/09/2010
04/09/2010
04/09/2010
04/09/2010
04/09/2010
04/09/2010
04/09/2010

04/09/2010
04/09/2010
04/09/2010

04/09/2010
04/09/2010
04/10/2010
04/09/2010
04/09/2010
04/10/2010
04/09/2010
04/09/2010

04/09/2010
04/09/2010
04/09/2010
04/09/2010
04/09/2010
04/09/2010
04/09/2010

04/09/2010
04/09/2010

12
03
12
12
12

03:
03:
03:
03:

:43
:52
:53
:54
:54
3 File(s)

52
52
53
53

2 File(s)

PM
PM
PM
PM
PM

PM
PM
PM
PM

12:42 PM
12:42 PM
10:38 AM

10
10
10
10
10:
10:
10

0 File(s)

:38
:38
:39
:39

39
40

:40
0 File(s)

10:39 AM
10:39 AM
10:38 AM

10:
10:
01
12:
10
11:
11:
10

10
10
10:
10
10
12
10

1 File(s)

39
39

:03

01

:53

40
57

:53
6 File(s)

:39
:39

40

142
:42
: 00
:40
5 File(s)

AM
AM

AM
AM
AM
AM
AM
PM
AM

10:40 AM
10:40 AM

Table 8-1. CD Directory listing

<DIR>
<DIR>

<DIR>
<DIR>

<DIR>
<DIR>
<DIR>

<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>

<DIR>
<DIR>

<DIR>
<DIR>

1

<DIR>
<DIR>

<DIR>
<DIR>

6,230
13,051
7,735

27,016 bytes

Directory of C:\report_CD\analysis\triangle metric\output

1,395,622
1,395,622

2,791,244 bytes

Directory of C:\report CD\report

Directory of C:\report CD\report\figures

Directory of C:\report_ CD\report\figures\0l_ intro

13,001

13,001 bytes

Directory of C:\report_ CD\report\figures\02 kriging

3,798
983,627
6,893,066
111,616
15,469
28,672

18,036,248 bytes

Directory of C:\report CD\report\figures\03_triangles

2,072
4,384
539,206
1,150,768
1,317,464

3,013,894 bytes

Directory of C:\report_ CD\report\figures\04 model_ correlation

0 bytes

0 bytes

output

triangles_add one.m
triangles_remove one.m
triangles remove_two.m

triangles_add_one mean.dat
triangles_add one median.dat

figures

01 _intro

02_kriging
03_triangles
04_model correlation
05_combine_3_methods

fig0l fiber vs steel_well locations.srf

krig _add _one_plotting.m
may2007_variogram modela.srf
perturbation spread of variograms.srf
piecewise linear trend.xls

remove one_steel well.srf

trend surface remove one results.xls

random_points_triangle explanation.mat
three_point_estimator fig.m

three point_estimator loglOr.tif

three triangle metrics.fig
triangulation_explanation.fig
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Table 8-1. CD Directory listing

Directory of C:\report CD\report\figures\05_combine_ 3_methods

04/09/2010 10:40 AM <DIR>
04/09/2010 10:40 AM <DIR> ..
0 File(s) 0 bytes

Total Files Listed:
81 File(s) 175,409,691 bytes
65 Dir(s) 147,501,948,928 bytes free

8.2. Kriging Variance Minimization Scripts

The following scripts were used in the kriging variance minimization (see Section 2.0).

8.2.1. R scriptplot linear fit summary.R

The following R script computes the linear fit surface (Equation 1, in Section 2.1) and the related
summary statistics given in Figure 2-3 and Table 2-1 using built-in statistical functions.

# this R script computes the best fit linear model through the freshwater
# head data and plots some summary statistics included as figures in the
# analysis report.

# load 7n data

wells <- read.table('../../common_data/2007_well_data_for_trend.dat')
row.names(wells) <- read.table('../../common_data/2007_well_names.dat')$vl
names(wells) <- c('x','y"',"fwh’, 'res', 'casing', 'flag')

attach(wells)

# don't select SNL-6 and SNL-15 (they have -999 in res column)

# and don't use redundant H-19 wells

mask <~ flag == 1

wells.Tm <- Tm(fwh[mask]~x[mask]+y[mask])

summary(wells.1m)

par(mfrow=c(2,2))

plot(wells.Tm)

8.2.2. Python script remove one variogram effects.py

The following Python script computes the best-fit trend surface through the dataset after
individually removing each steel-cased well. The two outputs from this script are the effects of
removing a well on the best-fit linear surface (see Figure 2-4) and the resulting smaller-by-one
datasets used to compute experimental variograms via Surfer in Figure 2-6.

import numpy as np
import os

modelDat = np.loadtxt(r'..\..\common_data\model_domain_specs.dat"')

# use midpoint of model domain for origin of surface fitting

# to improve condition number of matrices in least-squares fitting
xmid (mode1Dat[2,0% + modelDat[1,0])/2.0

ymid (modelpat[2,1] + modelDat[1,1])/2.0

fh = open(r'..\..\common_data\2007_wel1_names.dat','r')
names = [line.rstrip() for 1ine in fh]
fh.close()

wellDat = np.loadtxt(r'..\..\common_data\2007_wel1_data_for_trend.dat',dtype=np.float64)
# data columns: X,Y,FWH,res,casfgg,f7ag

# FwH :: may 2007 freshwater hea
# res :: residual computed using R
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# casing :: l=steel, O=fiberglass/pvc
# flag :: 0= do not use in trend analysis, 2=do not use at all,
# 1= use 7n both trend & variogram analysis

fh = open('trend_surface_remove_one_rgsq1ts.csv','w') . ,
fh.write('well,sum squared error,condition number,rank,RA2,A,B,C,gradient,angle\n")

trendwells = wellpat[wellpat[:,5]==1] .
trendNames = [name for (i,name) in enumerate(names) if wellpat[i,5]==1]
ntwells = trendwells.shape[0]

trendNames.append('base_case')

# additional wells used in variogram analysis, but not in trend analysis H-19b{2,3,4,5,6,7}
variowells = wellpat[wellpat[:,5]==0] .

varioNames = [name for (i,name) in enumerate(names) if wellDat[i, 5]==0]

nvwells = variowells.shape[0]

for i in xrange(ntwells+1):
if i==ntwells or np.abs(trendwells[i,4] - 1.0) < 0.01:

# make a mask that 7s all true
mask = trendwells[:-1,0] > 1.0

# set the current steel well to false
if 1 < ntwells:
mask[i] = False

tX = trendwells[mask,0] - xmid
tY = trendwells[mask,1l] - ymid
tH = trendwells[mask, 2]

# using numpy recompute linear trend & compute residuals

# compute statistics about change removing each well has on estimated surface
# relative change in angle, slope & offset of surface

# write wells & residuals to file

trendA = np.concatenate((tX[:,None],tY[:,None],np.ones((tX.shape[0],1))),axis=1)

X, residues, rank,singulars = np.linalg.1stsq(trendA, tH)
# residues is "squared Euclidian norm"

cond = np.max(singulars)/np.min(singulars)

# coefficient of determination

rsq = 1.0 - residues/np.sum((tH - np.mean(tH))*%*2)
#rsq =1 - SS_err / SS_tot

# write summary of fit as a line in file . .
fh.write(',"'.join(str(z) for z in (trendNames[i],residues[0],cond,rank,rsq[0]1)) +',")
fh.write('%.7e,%.7e,' % tuple(x[0:2])) # A and B L
fh.write('%.7¢e,' % (x[2] - x[0]*xmid - x[1]*ymid,)) # C corrected to original coords
fh.write(','.join(str(z) for z in (np.sqrt(xfo]**z + x[1]**2),
np.arctan2(x[1],x[0])/np.pi*180.0))+'\n")

tHpred = np.dot(trendA,x)
outdata = np.concatenate((trendwells[mask,0:2], .
tHpred[:,None], (tHpred-tH) [:,None]),axis=1)

# write all trend data_to separate file for variogram analysis in Surfer
np.savetxt('trend_results_'+trendNames[i]+'.dat',outdata, fmt="%.2f"')

fh.close()

8.2.3. Python script krig plus one.py

The following Python script drives the GSLIB kriging program kt 3d. exe during the kriging
variance minimization process for adding one well (where it is called as a program). The script
is also imported as a library in the remove-one and remove-two kriging variance reduction
scripts. This script imports shared data.py (line 8) to act as a container for storing shared
variables, and uses the MS-DOS batch script kt 3d_driver.bat (line 70) to manage directories
and executables related to kt3d execution.

import os
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2 import threading

from time import sleep
4 import numpy as np

from sciﬁy.stats import rankdata
6 from math import ceil

8 import shared_data as sh

10 # this script is part of ApP-111
# this python script adds an observation point at points

12 # in the model domain, each time calling KT3D.exe to krig the
# current network along with this additional observation.

# the kriging variance is read in and some statistics are saved
16 # for comparison and plotting.

18 def krig(ii.jj,xx,YY,nxx.nY¥vX°0, 00, dxx, dyy,base=False,addone=True):
""" write KT3D input file, call kt3d.exe,

20 and read in results for summarizing in global array."""
22 # write kt3d parameter file
d = '%03d_%03d' % (ii,j3)
24 os.popen('mkdir ' + d)
fname = os.path.join(d, 'KT3D.PAR")
2 fpar = open(fname, 'w')
28 fpar.write("""Parameters for KT3D\n****xxxxxxxrrxxrxxr2\n\nSTART OF PARAMETERS:
data.dat \\file with data
30 1 2 0 4 0 \\ columns for X, v, z, var, sec var
-1.0e21 1.0e21 \\ trimming limits .
32 0 \\option: 0=grid, l=cross, 2=jackknife
xvk.dat \\file with jackknife data
4 i 2 0 3 0 \\ columns for X,Y,z,vr and sec var
0 \\debugging Tevel: 0,1,2,3
36 kt3d.dbg \\file for debugging output
kriged.out \\file for kriged output
38 %(nxx)d %(x00)g %(dxx)g \\nx, xmn, xsiz
%(nyy)d %(y00)g %(dyy)g \\ny,ymn,ysiz
40 1 0.5 1.0 \\nz,zmn,zsiz .
1 1 1 \\x,y and z block discretization
42 0 44 \\min, max data for kriging
44 \\max per octant (0-> not used)
44 40000.0 40000.0 1.0 \\maximum search radii .
90.0 0.0 0.0 \\angles for search ellipsoid
46 1 0.0 \\0=SK,1=0K, 2=non-st SK, 3=exdrift
000000000 \\drift: x,¥,z,xx,yy,zz,xy,xz,zy
48 0 \\0, variable; 1, estimate trend
extdrift.dat \\gridded file with drift/mean_
50 1 \\ column number in gridded file
1 3.0 \\nst, nugget effect
52 3  40.0 90.0 0.0 0.0 \\it,cc,angl,ang2,ang3
7500.0 7500.0 10.0 \\a_hmax, a_hmin, a_vert\n""" % vars())
54 fpar.close()
56 # write data back to file, adding new point to end
finput = open(os.path.join(d, 'data.dat’), 'w') . \
58 finput.write('data for kriging data + 1 new well \n5 \nX \nY \nfwh \nres \ncasing \n')
fingut.write(sh.data)
60 if base == False and addone == True:
# add one data point (5 columns, tab delimited)
62 finput.write("%8.1f\t%9.1f\t 100.00 \t1l.00\t0 ' % (xx,yy))
finput.close()
64
# run KT3D via MS-DOS batch script
66 output = os.popen('kt3d_driver.bat ' + d)
for line 1in output:
68 pass
failure = output.close()
70 if failure:
print '*** KT3D failed ***',ii,jj
72 else:
print '(%031,%03i) ' ¥ (i1,3jj),
74
## read in and calculate summary statistics on kriging variance
76 # output from kt3d is a vector, reshape it into a matrix
var = np.reshape(np.loadtxt(os.path.join(d, 'kriged.out"'),
78 skiprows=4,usecols=(1,)), (nyy,nxx))
80 if base == True:
sh.base_case_mod = gvar[mod_m[o]:mod_m[li, mod_n[0]:mod_n[1]]1)
82 sh.base_case_wipp = (varlwipp_m[0]:wipp_m[1], wipp_n[0]:wipp_n[1]11)

Page 97 of 133




86

88

90

92

94

96

98
100
102
104
106
108
110
12
114
16
18
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154
156
158
160

162

AP-111 Rev. 1 Monitoring Network Design Optimization

# write base case kriging variance as a matrix for contouring
np.savetxt('kriged_base_case_var_img.dat',sh.base_case_mod, fmt="%.3f")

var_mod = var[mod_m[0]:mod_m[1], mod_n[0]:mod_n[1]]
var_wipp = var[wipp_m[0]:wipp_m[1], wipp_n[0]:wipp_n[1]]

# use lock when writing to global variable to prevent thread collisions
with threading.Lock(): .

# compute statistics for sub-block corresponding to model domain,

# masked by the cells which are inside the area of interest

# change 7n aoi-wide standard deviation

sh.mod_results[ii,jj,0] = (sh.base_case_mod[aoimask].std() -
var_mod[aoimask].std())/
sh.base_case_mod[aoimask].std()

# change in aoi-wide average .

sh.mod_results[ii,jj,1] = (np.average(sh.base_case_mod[aoimask]) -
np.average(var_mod[aoimask]))/
np.average(sh.base_case_mod[aoimask])

# change 7n aoi-wide median .

sh.mod_results[ii,jj,2] = (np.median(sh.base_case_mod[aoimask]) -
np.median(var_mod[aoimask]))/
np.median(sh.base_case_mod[aoimask])

# correlation coefficient between cases .
sh.mod_results[ii,jj,3] = 1.0 - np.corrcoef(sh.base_case_mod[aoimask].flatten(),
var_mod[aoimask].flatten())[0,1]

# change 1n max variance
sh.mod_results[ii,jj,4] = (sh.base_case_mod[aoimask].max() -
var_mod[aoimask].max())

# same statistics for land-withdrawl boundary sub-block

sh.wipp_results[ii,jj,0] = (sh.base_case_wipp[wippmask].std() -
var_wipp [wippmask] .std())/
sh.base_case_wipp[wippmask].std()

(np.average(sh.base_case_wipp[wi imask]) -

sh.wipp_results[ii,jj,1] i
np.average(var_wipp[wippmask]))/
np.average(sh.base_case_wipp w1E§mask])

(np.median(sh.base_case_wipp[w1E§mas ) -
np.median(var_wipp[wippmask]))/
np.median(sh.base_case_wipp[wippmask])

1.0 - np.corrcoef(sh.base_case_wipp[wippmask].flatten(),

var_wipp[wiE mask].flatten())[0,1]

(sh.base_case_wipﬁ[wippmas ﬁ.max() -

var_wipp [wippmask] .max())

sh.wipp_results[ii,jj,2]

sh.wipp_results[ii,jj, 3]

sh.wipp_results[ii,jj, 4]

HHAARRRA AR GRS
# common stuff that is useful for adding or removing wells from the network
# included below, imported elsewhere.

# coordinates of wipp land-withdrawl boundary (Mckenna 2004) Ap-111, p 13

# averaged to be a N-S square for simple array addressing (it is nearly square anyway)
h = open(r'..\common_data\wipp_boundary.dat'{

wipp_file = [1.rstrip() for 1 in fh]

fh.close()

coords = []

# corners listed in file in order :NE,SE,SW,NW,NE (NE repeated to close loop)
for 1ine in wipp_file[:-1]:
coords.append([float(z) for z in line.split()])

((coords[2][0] + coords[1][0])/2.0, (coords[0][0] + coords[3][0])/2.0)
((coords[2][1] + coords[3][1]1)/2.0, (coords[0][1] + coords[1][1]1)/2.0)

# output grid (the model domain) specifications, number of elements reduced by
# a multiplier to make the run-time feasible

mult = 4.0

fh = open(r'..\common_data\model_domain_specs.dat')

moddata = [1.rstrip() for 1 in fh]

wipp_x
wipp_y

fh.close()

# always rounds up when détenmfnfng number of elements

nx,ny = [int(ceil(float(z)/mult)) For z in moddata[0].split()]
x0,y0 = [float(z) for z in moddata[1].split()]

x1,yl = [float(z) for z in moddata[2].split()]

dx,dy = [float(z)*mult for z in moddata[3].split()]
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make vectors
= np.array([x0 + i*dx for i in range(nx)})
= np.array(ly0 + i*dy for i in range(ny)])

# check that everything adds ug correctly to fi]l the domain
assert abs(x[-1] - x1) < dx, abs(y[-1] -"y1) < dy

#
X
y

# saved from matlab, this array has 1.00E+0 for cells inside area of interest and

# 0.00E+0 for cells outside

size = mult*100 ]

intmask = np.loadtxt(r'..\common_data\model_cells_%(size)d_inside_totalbdry.dat' % vars(})
aoimask = intmask > 0.99

print 'model domain',intmask.sum(), 'true out of',np.size(intmask)
# make outerproduct matricies for Matlab plotting

X = np.outer(np.ones(ny),x)
Y = np.outer(y,np.ones(nx))

# indicies for this grid corresponding to the wipp Twb

wipp_n = (int((wipp_x[0] - x0)/gx), jnt((wjpp_x[lf - x0)/dx))

w1pg_m = (int((wipp_y[0] - y0)/dy), int((wipp_y[1] - y0)/dy)) |
sh.base_case_wipp = np.zeros((wipp_m[1]-wipp_m[0], wipp_n[1]-wipp_n[0]))

wippmask = aoimask[wipp_m[0]:wipp_m[1], wipp_n[0]:wipp_n[1]]
wippcheck = np.zeros(np.shape(wippmask))

wippcheck[wigpmask] = 1.0

print 'WIPP boundary',wippcheck.sum(), 'true out of',np.size(wippmask)

# indicies corresponding to the model domain

mog_n = EjntEExg - xggfgx%, jntEExg - xggfgx% + nx%

mod_m = (int -y y), 1nt{(y0 - + ny

sh.base_case_mzd = np.zeros((mod_m[l]-%od_m{O], mod_n[1]-mod_n[0]1))

format = '%.5e"

# read observed data as one Jong string

fh = open(r'..\common_data\2007_wel1_data.dat','r') .

?E'd?ta ?)fh.read().strip() # strip off ending / beginning whitespace
.close

# make sure data file ends in a newline
if sh.data[-1] != '\n':
sh.data = sh.data + '\n'

H BB AR BA AR H
# only run from here below if called as a program (rather than
# imported as a library)

if _name_ == '_main_":

# global arrays to write results into
sh.mod_results = np.ones((ny,nx,5))
sh.wipp_results = np.ones((ny,nx,5))

krig(0.0,0.0,0.0,nx,ny,x9,¥0=dx,dy,base=True)

f = open('base_stats.out’,'w’)
# mean, median, std dev

f.write(' '.join([str(x) for x in (sh.mod_results[0,0,1],sh.mod_results[0,0,2],
sh.mod_results[0,0,0], '\n')1))
f.write(' '.join([str(x) for x in (sh.wipp_resu1ts[0,0,1},sh.w1§§_resu1ts[0,0.2],
sh.wipp_results[0,0,0], '\n')]))
f.close()
for j in xrange(nx):
print ' '

for i in xrange(ny): .
# don't do calculation if point is outside area of interest
if aoimask[i,j] == True:
while True:
# 1imit the number of threads (8 processors)
if threading.activeCount() <= 8:
threading.Thread(target=krig
args=Ci,3,xbi,31,Y[i,31,nx,ny,
x0,y0,dx,dy,False)).start()
break

else:
sleep(0.015)

# wait for all the worker threads to finish before writing output
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while True:
if threading.activecount() > 1:
sleep(1.0)
else:
break

# write output in Matlab-friendly matrix format
names = ['stdev', "'mean', 'median', 'corrcoef’, 'max']

for i,name in enumerate(names):

print 'writing', name,i .
np.savetxt('addone_mod_results_' + name + '.dat', sh.mod_results[:,:,i],fmt=format)
np.savetxt('addone_wipp_results_' + name + '.dat', sh.wipp_results[:,:,1], fmt=Fformat)

np.savetxt('X.dat',X, fmt="%.1f")
np.savetxt('v.dat',v,fmt="%.1f")

8.2.4. Python script shared_data.py

The following short Python script is used to allow data to be saved and shared in a common
module (see line 8 of krig plus one.py, line 7 of krig remove one_ steel.py).

""" this js just for putting global data in, so
it can be seen between modules”"”

pass

8.2.5. MS-DOS batch script kt3d_driver.bat

The following MS-DOS batch script is called by the Python scripts (see line 70 of
krig_plus_one.py) that drive kt3d, and is actually responsible for calling kt3d. exe, first
creating a temporary directory and copying the executable and input files into that directory.
This allows the scripts to be threaded and have more than one copy of kt3d running at a time.

echo off

rem kriging plus one driver script

rem this batch file copies the executable into a working directory
rem runs 7t (7t expects a standard input filename KT3D.PAR)
rem and deletes the executable

copy /B /Y KT3D.EXE %1

copy /A /Y response %1

chdir %1

KT3D.EXE < response

del /F KT3D.EXE response

chdir ..\

8.2.6. MATLAB script generate model cell masks.m

The following MATLAB script generates ASCII matrix files representing the model grid,
indicating whether each cell is inside or outside the active MODFLOW region (relying on the
MATLAB built-in command inpolygon () to do most of the work). The text files generated by
this script are read in by krig_plus_one.py (line 176 of Section 8.2.1).

% this matlab script exports arrays representing whether a cell
% from the model grid 7s inside or outside the area of interest
X for use in python scripts

clear
totalbdry = load('..\common_data\total_boundary.dat');

% model grid (for 100x100 elements ~ the base size)
grid = load('..\common_data\model_domain_specs.dat');
nx = grid(1,1); ny = grid(1,2);

xmin = grid(2,1); ymin = grid(2,2);
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xmax = grid(3,1); ymax = grid(3,2);
dx = grid(4,1); dy = grid(4,2);
clear grid;

for mult = 1:6
[X,Y] = meshgrid(xmin:mult*dx:xmax, ymin:mult*dy:ymax);
% create logical mask
INSIDE = inpolygon(X,Y,totalbdry(:,1),totalbdry(:,2));
% convert to real to save (Matlab can't write logical values to ASCII)
inside = +INSIDE; )
filename = ['model_cells_",sprintf('%d’',100*mult), ‘_inside_totalbdry.dat'];
d save('~-ASCII',filename, 'inside’)
en

8.2.7. Python script krig remove one steel.py

The following Python script imports the main krig () routine from krig plus one.py (see
Section 8.2.1), but instead of adding more locations and re-kriging, a single steel-cased well is
removed from the existing dataset and the remaining set is re-kriged.

import sys
import numpy as np

# most of the functionality is defined in krig_plus_one; import to re-use code
sys.path.append(r'..\kriﬂing_add_we11')

import krig_plus_one as

import shared_data as shared

# this python script removes an observation point, each time calling
# KT3D.exe to krig the remaining network

fh = open(r'..\common_data\2007_well_names.dat','r"')
names = [line.rstrip() for line in fh]
fh.close()

# fifth column 7s casing type (I=steel, 0=fiberg7a55)
fh_= open(r'..\common_data\2007_well_data.dat', r")
wells = [Tine.rstrip().split() for line in fh]
fh.close()

shared.mod_results = np.zeros((len(wells)+1,1,5))
shared.wipp_results = np.zeros((len(wells)+1,1,5))

# base case, for computing percentage change

shared.data = '\n'.join("' t'.join(w? for w in wells)
rint 'base_case',
.krig(len(wells),0,0.0,0.0,k.knx,k.kny, k.kx0,k.ky0, k.dx,k.dy,base=True,addone=False)

fm

fm open('model_results_one.dat"', 'w’)

open('wipp_results_one.dat"', 'w')

stnames = []

# remove one steel cased well
for i,well in enumerate(wells):
if int(well[4]) == 1:
stnames.append(names[i])

# make a copy and delete current well from copy
cwells = Tist(wells)

del cwells[i]

shared.data = '\n'.join('\t'.join(w) for w in cwells)

Erint names[i],
.krig(i,0,0.0,0.0,k.knx,k.kny,k.kxO,k.kyO,k.dx,k.d{,base=Fa1se,addone=Fa1se)

fm.write(', '.join([str(x) for x in shared.mod_results[i,0,:1]))

fm.write(', : + names[i] + '\n")

fw.write(', '.join([str(x) for x in shared.wipp_results[i,0,:1]1))
fw.write(', ' + names{i] + '\n")

fw.close()

fm.close()
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8.2.8. Python script krig remove two steel.py

The following Python script is analogous to that in Section 8.2.6, except a list of most-likely-to-
be-removed steel-cased wells are first removed before removing a second steel-cased wells and
re-kriging the results. The main functionality of this routine is imported from the Python script
krig plus_one.py (see Section 8.2.1).

import sys
import numpy as np

# most of the funct7ona77ty 7s defined in krig_plus_one; import to re-use code
sys.path.append(r'. \kr1E1ng _add_well")

import krig_plus_one as

import shared_data as shared

# this python script removes an observation point, each time calling
# KT3D.exe to krig the remaining network

fh = open(r’..\common_data\2007_well_names.dat"','r")
names = [11ne rstrip() for line in fh]
fh.close()

# fourth column is casing type (I=steel, 0—fﬁberg7a55)
fh = open(r'..\common_data\2007_well data dat',

wells = [11ne rstrip().split() for line in fh]
fh.close()

# perform the ‘remove one well" analysis for the networks modulo the
# following ' 71kely to not be rep7aced" we775
firstwell = ['wIPP-25', 'wIPP-13"', 'H-12",'H-7b1']

shared.mod_results = np.zeros((len(wells)+1,1,5))
shared.wipp_results = np.zeros((len(wells)+1,1,5))

# same base-case used throu ghout to_allow comparison

shared.data = '\n .Join("\t".join(w) for w in wells)
rint 'base case'
.krig(1en(we11s),0,0.0,0.0,k.knx,k.kny,k.kxO,k.kyO,k.dx,k.dy,base=True,addone=Fa1se)

fm

fm open('model_results_two.dat', 'w')

open('wipp_results_two.dat', ‘w')

stnames = []

# remove one of the first steel cased wells
for first in firstwell:

# find index in 1ist

ifirst = names.index(first)

# make a Jocal co, fy of well J]ist
cwells = Tist(wel

# remove first steel well
del cwells[ifirst]

# cycle through remaining steel wells
for i,well in enumerate(we 1s):
if int(well[4]) == 1:
if ifirst I= 9:

stnames.append(names[i])

# make another cop. of list, removing second well
cewells = list(cwells
del ccwells[i]

# collapse back into string .
shared.data = '\n'.join("' \t .join(w) for w in ccwells)

Er1nt names[1f1rst],names[1],

krig(i,0,0 ;0,0.0 yk.knx, k.kny, k.kx0,k.ky0, k.dx, k. d{ ,base=False, addone-Fa1se)
fm. wr1te( , Jo1n([str(x) for x in shared. mod_ resu ts[1,0,:1DD+',")
fm.write(', ° Jo1n((names[1f1rst] names[i])) + '
fw.write(', '.join([str(x) for x in shared. w1pp_resu1ts[1 0,:1D+',")
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fw.write(', '.join((names[ifirst],names[i])) + ‘\n"')

fw.close()
fm.close()

8.3. Triangle Metric Maximization Scripts

The following scripts were used in the local gradient estimation or triangle metric maximization
portion of the analysis (see Section 3.0).

8.3.1. MATLAB script triangles _add one.m

The following MATLAB script computes and plots figures related to the triangle interior angle
ratio metric. Each location in the model domain is added to the current network and the statistics
are re-computed.

clear

% this Matlab script asses the benefit of adding a new well, where

% locations on the MODFLOW modb7dgrfd are used as potential locations.
% This approach is geometry-based only;

% the ratio min(angle)/max(angle) is used as a metric for the "quality" of
% a triangle. Mmore equilateral (ratio=1) triangles would be better.

addpath '..\common_programs\"

wells = 1oad('..\common_data\2007_we11_data_for_triang1es.dat');
margin = Joad('..\common_data\composite_23_margin.dat");

noflow = Joad('..\common_data\no_flow_boundary.dat');

totalbdry = Toad('..\common_data\total_boundary.dat");

WIPP = 1oad('..\common_data\wipp_boundary.dat'g;

% default ghull options, except QbB, which scales domain to unit box (since
% UTM coordinates are numerically large and can Jead to significant

% roundoff error)

triopts = {'qQt’,'qbB"','Qc", 'Qz"'};

xt=wells(:,1);
yt=wells(:,2);
nw = size(xt,1);

% model grid
grid = Toad('..\common_data\model_domain_specs.dat');

nx = grid(1,1); ny = grid(1,2);
xmin = grid(2,1); ymin = grid(2,2);
dx = grid(4,1); dy = grid(4,2);
clear grid;

[X,Y] = meshgrid(linspace(xmin,xmin+nx*dx,nx), ...
Tinspace(ymin,ymin+ny*dy,ny));
D = numel (X);

INSIDE = reshape(inpolygon(X,Y,totalbdry(:,1),totalbdry(:,2)),D,1);
INSIDE(D+1) = 1;

% observation points in a long x,y vector
z(1:0,1:2) = [reshape(X,D,1),reshape(Y,D,1)];

Q = zeros(D,5);
numt = zeros(D,1);

for jj=1:p+1
% only points between no-flow and h2/h3 halite boundaries are

% candidate sites, skip the others
if INSIDE(jj)

if jj==D+1
X=xt;
y=yt;
else
x = [xt; 2(3j,11;
y = [Iyt; z(33,21;
end
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tri = delaunay(x,y,triopts);

nt = size(tri,1);
geom = zeros(size(tri,1),7);

Monitoring Network Design Optimization

% 3 sides, 3 angles, area, # pts inside

% calculate geometric things related to triangles
%’lengths from Pythagorean theorem

% angles from cosine law

% area from Matlab built-in fcn

X% length of side a (2->3)
geom(1l:nt,1) = sgrt((x(tri(:,3

)) - x(tr1( 2 2))) A2 + .

C(eri(:,3)) - yCeri(:,2)))A

% Tength of side b (3->1)
geom(l:nt,2) = sqre((x(tri(:,1

GeriG, D) - yCeri(:,39))0A

% Tength of side ¢ (1->2)
geom(1l:nt,3) = sqrt((x(tri(:,2
G(tri(:,2)) - y(tri(:, 1))

% angle 1 between sides b & ¢

geom(l:nt,4) = acos((sum(geom(
(2. O*prod(geom( 2:3),2)));

% angle 2 between sides a & ¢

geom(1l:nt,5) = acos((sum(geom(
(2. O*prod(geom( 1:2

% angle 3 between sides b & a

geom(1l:nt,6) = acos((sum(geom(
(2. O*prod(geom( 1:2),2)

% area of triangle - use MATLA

geom(1l:nt,7) = polyarea(x(tri(:,

% compute triangle comparison
ang_ratio = min(geom(:,4:6),[]

% area-weighted angle rat7o
Q(jj,1) = sum(ang_ratio(:).*ge

)) -)x(tr1( ,3))).A2 4+ ...

)) - x(eri(G,1))).A2 + ...
).A2);

in radians
12:3).A2,2) - geom(:,1).A2)./ ...

in radians
1 1:2: 3).A2,2) - geom(:,2).A2)./ .

7n radians
1:2).A2,2) -~ geom(:,3).A2)./ .

B built-in function
1:3)),y(tri(:,1:3)),2);

criterias
,2)./max(geom(:,4:6),[1,2);

om(:,7))/(nt*sum(geom(1l:nt,7)));

% non-weighted angle ratio average

Q(jj,2) = sum(ang_ratio(:))/nt;

% area-weighted angle ratio median

Q(jji,3) = med1an(ang_rat1o( ).
numt(ij) =

% mean tr7ang7e area
Q(jj,4) = sum(geom(:,7))/nt;

% median triangle area
Q(3j,5) = median(geom(:,7));
end
end

*geom(:,7))/sum(geom(1:nt,7));

% reset values outside area of interest to not-a-number

% so they are not plotted.

% save results for use in final 3-way
out = reshape(squeeze((Q(l end-1,1)-qQ(
out(~INSIDE(1 end-1)) = -999;
save('triangles_add_ one mean.dat', 'out’
out = reshape(squeeze((Q(1l:end-1, 3) Q(
out(~INSIDE(1 end-1)) = -999;
save('triangles_add_one_| median.dat" ,'0
clear out;

Q(~INSIDE(1l:end-1),1:end) = NaN;
numt(~INSIDE(1l:end-1)) = NaN;

scrnsz = get(0, 'Screensize');

%% plot results

figure()

ceil (max(numt)-min(numt))
contourf(X,Y, reshape(numt(1:D),ny,nx),
colorbar;

daspect([l,l,l]);

hold on

tri = delaunay(xt, yt, tr1opts),
triplot(tri, Xty yt, 'g', 'Linewidth',0.5);
plot(xt,yt, 'or', L1neW1dth' 2)

combination of results
D+1,1))./Q(D+1,1)),ny,nx);

'-ASCII
D+1,3)). /Q(D+l 3)),ny,nx);

ut', '-ASCII");

3
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plot(mar in(:,l),margin(:,z),'—m','Linewidth',Z)
plot(noflow(:,1),nofTow(:,2), '--k', "Linewidth',2)
plot(wiprp(:,1),wIPP(:,2), " '-k', ‘Linewidth',1.5)

x1abel('NAD27 UTM x Zone 13 [m]', 'FontSize',14)

ylabel('NAD27 UTM y Zone 13 [m]', 'FontSize',14)

title('Total number of triangles in network') .

% measured from inside of figure window (no borders or toolbars included)
% position -> [left, bottom, width, hefght]
set(gcf, 'Position’', [10,50, (scrnsz(4)-120)*0.95,scrnsz(4)-120])
% make file printed at screen size, rather than bad default
set(gcf, 'PaperPositionMode', 'auto');

print(’-dmeta’, 'triangles_addl_total_number.emf')

tgqez = E'sca1ed_mean_ang1e','unsca1ed_mean_ang1e','median~ang1e','mean_area','median_area'};
cblab = {'%\Delta area—weighted mean angle ratio',
'%\Delta mean angle ratio', ...
‘%\Delta area-weighted median angle ratio’, ...
‘%\Delta mean triangle area', '%\Delta median triangle area'};
txt = {lal,llylbl,ll’ll’ll};
white = 0.0;
for ii=1:5
clf;

data = squeeze((Q(1:D,ii) - Q(p+1,ii))./Q(D+1,i1));
contourf X,Y,reshape(data.nK,nx),ZO);
colormap(redwhitemap(data,white));
cb = colorbar;
set(get(cb, 'ylabel'), " 'string',cblab{ii}, 'FontSize',14);
daspect([1,1,1]);
hold on
tri = delaunay(xt,yt,triopts);
triplot(tri,xt,yt,"'g’, 'Linewidth’,2)
plot(xt,yt, ‘or', 'Linewidth’,2)
plot(mar in(:,l),mar?in(:,Z),'—m','Linewidth',z)
plot(noflow(:,1),nofTow(:,2),'--k', 'Linewidth',2)
plot(wipp(:,1),wiPP(:,2), " '-k', 'Linewidth',1.5)
xlabel ('NAD27 UTM X Zone 13 [m]', 'FontSize',14)
ylabel('NAD27 UTM Y Zone 13 [m]', *FontSize',14)
set(gcf, "Position’, [10,50, (scrnsz(4)-120)*0.85, scrnsz(4)-120])
set(gcf, 'PaperPositionMode', ‘'auto');
text(6.05E5,3.594€6,txt{ii}, 'Fontsize', 24, 'Fontweight', 'bold');
brighten(0.5);
4 print('-dmeta’, ['triangles_addl_',type2{ii},"'.emf'])
en

8.3.2. MATLAB function redwhitemap.m

The following MATLAB script is a function for computing the red-white-blue color maps used
in the plotting of figures in this section; see line 161 of triangles_add one.m in section
8.3.1.

function [ map ] = redwhitemap( data, white )
AREDWHITEMAP create a specific color map from
% blue = min to red=max with wite at a specific number

mindata = min(min(data));
maxdata = max(max(data));
nlevels = 64;

map = zeros(nlevels, 3);

if mindata >= white
% ** all data wil] be colored red (no blue or white)

mindata = white;

% compute color at midpoint of each bin, rather than at max or min
xn = mindata + (0.5:1.0:(nlevels-0.5))*(maxdata - mindata)/nlevels;

% white -> red

map(xn >= white,lg
map(xn >= white,?2
map(xn >= white,3)

1; % red .
(maxdata - xn(xn >= white))/(maxdata - white); % green
map(xn >= white,2); % blue

nun

elseif maxdata <= white
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% ** all data will be colored blue (no red or white)
28
maxdata = white;
30
% compute color at midpoint of each bin, rather than at max or min

32 xn = mindata + (0.5:1.0:(nlevels-0.5))*(maxdata - mindata)/nlevels;
34 % blue -> white .
map(xn < white,1) = (xn(xn < white) - mindata)/(white - mindata); % red channel
3% map(xn < white,2) = map(xn < white,1); % green
map(xn < white,3) = 1; % blue
38
else
40 % ** data will be blue, red, and white
42 % compute color at midpoint of each bin, rather than at max or min
xn = mindata + (0.5:1.0:(nlevels-0.5))*(maxdata - mindata)/nlevels;
4
% blue -> white
46 map(xn < white,1) = (xn(xn < white) - mindata)/(white - mindata); % red channel
map(xn < white,2) = map(xn < white,1); % green
48 map(xn < white,3) = 1; % blue
50 % white -> red
map(xn >= white,1) = 1; % red
52 map(xn >= wh1'te,23 = (maxdata - xn(xn >= white))/(maxdata - white); % green
map(xn >= white,3) = map(xn >= white,2); % blue
54
end
56 end

8.3.3. MATLAB script triangles remove _one.m

The following MATLAB script computes and plots the triangle interior angle ratio metric after
individually removing each of the steel-cased wells from the network.

clear
2 % This matlab script looks at the effects that removing one of the
% steel~cased (without replacement) would have on the estimation of the
4 % gradient, using linear interpolation across Delauny triangles as the
% estimator.

% Load data
8 addpath *'..\common_programs\';

10 % well a’atat (x,y, fwh,res,casing type)
wells Tload("'. {common data\2007 well_data_for_triangles.dat’);
12 names textread(' .\common_data\2007_wel1_names_for_triangles. dat’ ,'%s');

14 % the majority of this analysis should be done without SNL-6 and SNL-15,
% but some f1gure5 in text use them for comparison
16 RHmask = wells(:,4) > -990; % exclude SNL-6 and SNL-15
wells = weﬂs(RHmask )
18 names = names(RHmask,:);
% RHmask = one5(51ze(we775 D,1D;
20
margin = load('..\common_data\composite_23_margin.dat');
2 noflow = load('..\common_data\no_flow_boundary.dat’ ),
totalbdry = 1oad(' .\common_data\total_boundary.dat');
24 wipp = load('. \common data\wipp_boundary.dat' §

2 nearwipp = [min(wipp(:,1))-750.0,max(wipp(:,1))+750.0, ...
min(wipp(:,2))-750.0,max(wipp(:,2))+750. 0],

28
% wells that make a convex hull around the dataset of all wells
30 hull = convhull(wells(:,1),wells(:,

32 steelwells = wells(wells(:,5)==1, 1 3), % fifth column indicates casing type
fiberwells = weﬂsgweﬂs( ,5)==0,1

34 stnames =  {names{wells(: 5)-—1}},

3% % wells on the hull that are also steel-cased

38 %or =1: s1ze(stee1we11s 1)
for k=1:size(hull,1
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if sqrt((steelwells(i,1) - wellsChull(k),1))A2 + ...
(steelwells(i,2) - wellsChull(k),2))A2) < 1
sthul1(j) = i;
j=j+1;
end
end
end

xt=wells(:,1);
t=wells(:,2);
t=wells(:,3);

nw = size(xt,1);

nst = size(steelwells,1);

Q = zeros{(nst+l1,3):

% calculation grid (not MODFLOW grid) 7is minimal grid which includes
% convex hull around data

xmin = min(xt); ymin = min(yt);

xmax = max(xt); ymax = max(yt);

dx = 100.0; dy = 100.0; % note: using 100x100 is slow.

[X,Y] = meshgrid(xmin:dx:xmax, ymin:dy:ymax);
nx size(X,2);
ny = size(x,1);

INSIDE = inpolygon(X,Y,totalbdry(:,1),totalbdry(:,2));

npts = numel(X);

% direction and magnitude of gradient in each cell, for
% scenario of removing each steel-casing well + base case

GRAD = zeros(npts,nst+1,2);

% effects of removing one steel-casing well + base case for comparison
for jj=l:nst+l

if jj < nst+l
% set of x,y,h without steel casing well jj
X = [fiberwe11s(:,1);stee1we11s(1:jj—l,l);stee1we11s(jj+1:nst,1)];
K Efjberwe11s€:,2);stee1we11s€l:jj—l,2);stee1we11s(j1+l:nst.2) ;
] fiberwells(:,3);steelwells(1:33-1,3);steelwells(3JJ+1:nst,3)];
else

X= Xt;

hehe
nd

tri = delaunay(x,y);
nt = size(tri,1);

e

D = zeros(size(tri,1),1);
coeff = zeros(size%tri,l),4;;
grad zeros(size(tri,1),2); % angle and magnitide of hydraulic gradient
geom zeros(size(tri,1),8); % 3 sides, 3 angles, area, # pts inside

% compute equation for line through 3 points

% value of determinant used in denominator of Cramer's rule

D(1:nt) = x(triG, 1)) . *y(tri(:,2)) + x(eri(:,2)) . *y(tri(:,3)) + ...
yCeri (e, 1)) *x(tri(:,3)) - x(tri(:,3)) . *y(ri(:,2)) - ...
x(eri(:,1)).*y(tri(:,3)) - xCeri(:,2)).*y(eri(:,D);

% a (coefficient on x)

coeff(l:nt,1) = Ch(tri(:,
h(tri(:,Z)).*yEtri(:,
h(tri(:,2)) . *y(tri(:,

% b (coefficient on y)

%).*yﬁgi(é.zggf y('gri%:,%)).*h(tri(:d)) + ..
- ri(:, W E ri(:, - e
); - h(tri(:.1)).*¥Etri(:,3)))-/0;

R

coeff(l:nt,2) = (x(tri(:,1)).*h(tri(:,2)) + h(eriCG, D) *x(tri:,3)) + ...
x(tri:,2)).*h(tri(:,3)) - xCtri(:,3)).*h(tri(:,2)) - ...
x(tri(:,2)) . *h(tri(:,1)) - x(tri(:,1)).*h(tri(:,3)))./D:

% ¢ (constant coefficient)

coeff(l:nt,3) = (x(eriC:, D)) . *y(tri(:,2)).*h(tri(:,3)) + ...
y(eriC:, 1)) *h(tri(:,2)) . *x(triC:,3)) + ...
x(tri(:,2)) . *y(tri(:,3)).*h(eri(:,1)) -
x(triC:,3)).*y(tri(:,2)).*h(tri(:, 1)) - ..
x(tri(:,2)).*y(tri(:,1)).*h(tri(:,3)) - ..
x(Ctri(:, 1)) . *y(tri(:,3)) . *h(tri(:,2)))./D;

% compute angle and magnitude of hydraulic gradient
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grad(l:nt,1)

atan2(coeff(:,2),coeff(:,1));
grad(l:nt,2)

sqrt(sum(coeff(:,1:2).A2,2));

%’maﬁ results from "vector" triangles to "raster” grid
for kk=1:nt
% result is a 7ogica7 vector, indicating if the cell 7is in (T) or
% out (F) side this current trianz7e
IN = reshape(inpolygon(X,Y,x(tri(kk,1:3)),y(tri(kk,1:3))),npts,1)

% sum(IN) = number of cells inside the triangle
X% ones(sum(IN))*kk = column vector of the counter kk o
z coeff(...,1:2) = x & y gradient repeated for every cell inside

that triangle, copied to correct locations in GRAD

q GRAD(IN,jj,1:2) = coeff(ones(sum(IN),1)*kk,1:2);
en

% calculate geometric things related to triangles
% lengths from Pythagorean theorem

% angles from cosine ]aw

% area from matlab built-in fcn

%’7ength of side a (2->3)

geom(1l:nt,1) = sqrt((x(tri(:,3)) - x(tri(:,2))).A2 + ...

C(eri(:,3)) - y(tri(:,2))).A2);

% length of side b (3->1)

geom(1l:nt,2) = sqre((x(tri(:,1)) - x(tri(:,3))).A2 + ...
(y(eri(:, 1) - y(tri(:,3))).A2);

% length of side ¢ (1->2)

geom(1l:nt,3) = sqre((x(tri(:,2)) - x(tri(:,1))).A2 + ...
(y(tri(:,2)) - y(tri(:,1))).A2);

% angle 1 between sides b & ¢ in radians

geom(1l:nt,4) = acos((sum(geom(:,2:3).A2,2) - geom(:,1).A2)./ ...
(2.0*prod(geom(:,2:3),2)));

% angle 2 between sides a & ¢ 7n radians

geom(1l:nt,5) = acos((sum(geom(:,1:2:3).A2,2) - geom(:,2).A2)./ ...
(2.0*prod(geom(:,1:2:3),2)));

% angle 3 between sides b & a 7n radians

geom(1:nt,6) = acos((sum(geom(:,1:2).A2,2) - geom(:,3).A2)./ ...
(2.0*prod(geom(:,1:2),2)));

% area of triangle - use MATLAB built-in function
geom(1l:nt,7) = polyarea(x(tri(:,1:3)),y(tri(:,1:3)),2);

% compute goodness triangle criteria
ang_ratio = min(geom(:,4:6),[],2)./max(geom(:,4:6),[],2);

X area-weighted mean angle ratio
Q(jj,1) = sum(ang_ratio(:).*geom(:,7))/(nt*sum(geom(1l:nt,7)));

% area-weighted median angle ratio
Q(jj,2) = median(ang_ratio(:).*geom(:,7))/sum(geom(1l:nt,7));

% median triangle area
Q(jj,3) = median(geom(:,7));

end

if sum(RHmask) == 44

% plot figures showing distribution of metrics for 2007 Culebra network

figure();
trisurf(tri,x,y,ones(size(x),1),logl0(geom(:,7)));
view(2)

axis('image')

xlabel ('NAD27 UTM X Zone 13 [m]', 'FontSize',12)
ylabel('NAD27 UTM Y Zone 13 [m]', 'FontSize',12)

cb = colorbar;

set(get(cb, 'ylabel'), 'string’, 'lTog_{10}(triangle area [mA2])", "FontSize',12);

text(6.06E5,3.593E6, 'a’, 'FontSize', 20, 'Fontweight', 'bold"')
brighten(0.25);
print('-dmeta’, 'triangles_2007_network_loglO_area.emf')

trisurf(tri,x,y,ones(size(x),1),ang_ratio);
view(2)

axis('image')

x1abel ('NAD27 UTM X Zone 13 [m]', 'FontSize',12)

ylabel('NAD27 UTM Y zone 13 [m]', 'FontSize',12)

cb = colorbar;

set(get(cb, "ylabel'), 'string’, 'interior angle ratio', 'FontSize',12);
text(6.06E5,3.593€E6, 'b’, 'FontSize', 20, 'Fontweight', 'bold")
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202 brighten(0.25);
print(’'-dmeta’, 'triangles_2007_network_angratio_area.emf")
204
trisurf(tri,x,y,ones(size(x),1),logl0(grad(:,2)));
206 view(2)
axis('image')
208 xlabel ('NAD27 UTM X Zone 13 [m]’, 'FontSize',12)
ylabel('NAD27 UTM Y Zone 13 [m]’,'FontSize',12)
210 ¢cb = colorbar; .
set(get(cb, 'ylabel'), " 'string’, 'Tog_{10} (gradient magnitude)','FontS1ze',12);
212 text(6.06E5,3.593E6, 'c', 'FontSize', 20, ‘Fontweight', "bold")
brighten(0.25);
214 print(’-dmeta’, 'triangles_2007_network_gradmag_area.emf’)
216 figure()
subplot(131)
218 p1ot(10910(geom(:,7)),ang_ratio,'o')
xlabel("1og_{10}(triangle area [mA2])')
220 ylabel('interior angle ratio')
axis([5,8,0,1])
222 text(7.5,0.9,%a', 'FontSize', 22, 'Fontweight', 'bold")
subplot(132)
224 p1ot(10910(grad(:,2)),ang_ratio,'+')
x1label("10g_{10} (gradient magnitude)')
2% ylabel('interior angle ratio")
axisE[-S,0,0,l )
228 text(-0.6,0.9,'b", "FontSize', 22, 'Fontweight', 'bold’)
subplot(133)
230 p1ot(10910(grad(:,2)),1oglo(geom(:,7)).'*')
ylabel("log_{10}(triangle area [mA2])")
232 xlabel('log_{10} (gradient magnitude)"')
axis([-5,0,5,8])
234 text(-0.6,7.7,'c’, 'FontSize', 22, 'Fontweight', 'bold’)
print('-dmeta’, 'scatter_plots_2007_network_metrics.emf"')
236
figure()
238 triplot(tri,x,y)
axis('image')
240 hold on
plot(fiberwells(:,1),fiberwells(:,2), " 'bs"',
242 ‘Markersize', 6, ‘MarkerFacecolor’, 'b");
plot([steelwells(1:4-1,1);steelwells(i+1:nst,1D], ...
244 [steelwells(1l:i-1,2);steelwells(i+l:nst,2)], ‘'ro',
‘Markersize', 6, 'MarkerFaceColor’, 'r');
246 p1ot(mar?in(:,1),mar?in(:,2),'—m','Linewidth',Z);
plot(noflow(:,1),noflow(:,2), " '--k*, "Linewidth',2);
248 p]ot(wipp(:,1),wipp(:.23,'-k','Linewidth',Z);
midx = sum(x(tri(:,1:3)),2)/3.0;
250 midy = sum(y(tri(:,1:3)),2)/3.0;
quiver(midx,midy,-coeff(:,1),-coeff(:,2),2.5, k', "Linewidth',2)
252 x]abel ('NAD27 UTM X Zone 13 [m]', 'FontSize',12)
ylabel('NAD27 UTM Y Zone 13 [m]', 'FontSize',12)
254 text(6.06E5,3.594E6, 'a’, 'FontSize', 22, 'Fontweight', 'bold")
: print(’'-dmeta’, 'vector_plots_2007_network.emf’
256 else
?:plot(;fgures showing distribution of metrics for 2007 Culebra network (no SNL-6 or SNL-15)
258 1gure();
tr?surf(tri,x,y,ones(size(x),1),10910(geom(:,7)));
260 view(2)
axis('image')
262 x]abel (*NAD27 UTM X Zone 13 [m]', 'FontSize',12)
ylabel('NAD27 UTM Y Zone 13 [m]', 'FontSize',12)
264 cb = colorbar; .
set(get(cb, 'ylabel'), 'string', 'lo _{10}(triangle area [mA2])','FontSize',12);
266 text(6.06E5,3.593€E6, 'a’', 'FontSize", 20, 'Fontweight', 'bold")
brighten(0.25);
268 print('-dmeta’, 'triangles_noSNL15-6_network_loglO_area.emf')
270 trisurf(tri,x,y,ones(size(x),1),ang_ratio);
view(2)
2 axis('image')
xlabel ('NAD27 UTM X Zone 13 [m]', 'FontSize',12)
274 ylabel('NAD27 UTM Y Zone 13 [m]’, 'FontSize’,12)
cb = colorbar;
276 set(get(cb, 'ylabel'), 'string", 'interior angle ratio', 'FontSize',12);
text%6.06E5,3.593E6,'b','FontSize',ZO,'FontWeight','bo1d')
278 brighten(0.25);
print('-dmeta’, 'triangles_noSNL15-6_network_angratio_area.emf')
280
trisurf(tri,x,y,ones(size(x),1),logl0(grad(:,2)));
282 view(2)
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axis('image')

xlabel ('NAD27 UTM X Zone 13 [m]', 'FontSize',12)

ylabel('NAD27 UTM Y Zone 13 [m]', 'FontSize',12)

cb = colorbar; .

set( et(cb,'y1abe1'), str1ng ,'lo {10}(grad1ent ma9n1tude)' 'FontSize',12);
text(6.06E5,3.593E6, 'c’, 'FontSize', 20, ‘Fontweight', "bold')

brighten(0.25);

print('-dmeta’, 'triangles_noSNL15-6_network_gradmag_area.emf')

figure()
ubplot(131)
p1ot(10910(geom( ,7)),ang_ratio, 'o")

xlabel(’log_ {lO}(tr1ang1e area [mA2]) )

ylabel (' 1nter1or angle ratio')

ax1s([5

text(7.5 9 ‘a','FontSize', 22, 'Fontweight', 'bold")
subp1ot(132)

p1ot(1oglo(grad( ,2)),ang_ratio, '+")

xlabel( log_ {10}(grad1ent magn1tude) )
ylabel('interior angle ratio

axis([-5,0,0, 1])

text(-0. 6 0.9 s 'b',"Fontsize',22, "Fontweight', "'bold")
subp1ot(133)

p1ot(10910(grad( »2)),1ogl0(geom(: 7)),'*')
ylabel("log_ {10}(tr1ang1e area [mAZ]) )

xlabel (' 1og {10}(grad1ent magnitude)')

axis([-5,0 )

text(-0.6 7 7 , 'FontSize',22, 'Fontweight', 'bold")
print(’ “dmeta’ , scatter_p]ots NOSNL15- 6_network_metrics.emf')

figure()
tr1p1ot(tr1 X,Y)
axis(' 1mage 9
hold ol
p1ot(f1berwe11s( 1) fiberwells(: 2) 'bs',
‘Markersize’ 6 MarkerFaceCo1or 'b');
p1ot([stee1we11s(l i-1,1); stee1we11s(1+1 nst, 1], ..
[stee1we11s(1 1 -1,2); stee1we11s(1+l nst,2)],"' ro'
'Markersize',6, MarkerFaceCo1or r');
plot(margin(: 1) mar?1n( 22),"'-m' L1neW1dth' 2),
plot(noflow(:,1), nof ow( 2), —-k' "Linewidth v 2);
plot(wipp(:,1),wipp(:,2), t-k!, 'Linewidth',2);
midx = sum(x(tr1( 1: 3)) 2)/3.0;
midy = sum(y(tri(:, 1 3)) 2)/3.0; .
qu1ver(m1dx m1dy,-coe f(: l),—coeff( ,2),0.5, 'k, "Linewidth",2)
xlabel (' NAD27 UTM X Zone 13 [m}*®, "Fontsize® ,12)
ylabel('NAD27 UTM Y Zone 13 [m]'", FontS1ze ,12)
text(6.06E5,3. 594E6, 'b', 'FontSize' ,22, "Fontweight', "bold")
print(’ “dmeta’ s "vector.| p1ots NOSNL15- 6 network . emf" )

end

% save results to file for making tables

stnames

out = abs(100.0*(Q(l:nst,1:3)- Q(ones(nst 1)*(nst+1) 1:3))./Q(ones(nst,1)*(nst+1),1:3));
save('triangles_remove_one_well.dat’, 'out’, '-ASCII )

figure()

scrnsz = get(0, 'Screensize');

% change in mean interior angle-ratio of network

figure()

ylab = {'%\Delta in area-weighted mean angle_ratio', ...
'%\Delta in area-weighted median ang1e ratio’,
'%\Delta in median triangle area'};

fname = {'mean_angle', 'median_angle', 'median_area'};

for 17%:3
C
tmp=abs (100. 0*(Q(1 nst,i)-Q(nst+1,1))./Q(nst+1,1));
bar(l:nst,tmp,'r");
hold on;
tmp(sthull1(:)) = 0.0;
bar(l:nst, tmp,'b )
x1abel ("' removal of steel-cased well');
y1abe1(y1ab{1} fonts1ze ,13),
setggcf PaperType', tab1o1d )
set(gca, 'XTickMode', "manual’);
set(gca, "XTick',1: nst)
set(gca, ' XTickLabel® ,stnames),
set(gcf, 'PaperpositionMode’, 'auto’)
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364 set(gcf, 'Position’, [10,50,0.85*scrnsz(3),0.33*scrnsz(4)])
q print('-dmeta', ['triangles_removel_',fname{i}, '_compare.emf'])
366 en

368 % relative difference between gradient without steel] well and base case
BASE = GRAD(1l:npts,ones(nst,1)*(nst+1),1:2);
370 DIFF = (GRAD(l:nptS,l:nSt,l:Z) ~ BASE)./BASE;
mag = sqrt(sum((GRAD(:,1l:nst,1:2) - GRAD(:,ones(nst,1)*(nst+1),1:2)).A2,3));
372
% area "effected"” by removal of well (square meters)

clf;
subplot(211)
376 tol = 1.0E-3;
mask = mag > tol;
378 mask(~INSIDE) = false;
count = zeros(nst,1);
380 for j=l:nst
count(j) = sum(mag(:,j) > tol);
382 end
tmp = dx*dy*(count);
384 bar(1l:nst,1ogl0(tmp), 'r');
hold on;
386 tmp(sthul1(:)) = 0.0;
bar(1l:nst,Togl0(tmp),'b');
388 xlabel('removal of steel-cased well’);
tit]e%']og_{lO}(area) effected (0.001) by removal [mA2]', 'fontsize',13);
390 axis([0,nst+1,4,8]);
set(gcf, 'PaperType’, 'tabloid"')
392 setggca,'XTickMode','manua]');
set(gca, 'XTick',1:nst);
394 set(?ca,'XTickLabe]',stnames);
subplot(212)
396 tol = 1.0€E-2;
mask = mag > tol;
398 mask(~INSIDE) = false;
count = zeros(nst,1);
400 for j=1l:inst
count(j) = sum(mag(:,j) > tol);
402 end
tmp = dx*dy*(count);
404 bar(l:nst,1ogl0(tmp),'r');
hold on;
406 tmp(sthull1(:)) = 0.0;
bar(1l:nst,Togl0(tmp),'b');
408 xlabel('removal of steel-cased well');
title('log_{10}(area) effected (0.01) by removal [mA2]','fontsize',13);
410 axis([0,nst+1,4,8]);
set(gcf, 'PaperType', 'tabloid")
412 set(gca, 'XTickMode', 'manual');
setggca,'XTick',l:nst);
414 set(gca, 'XTickLabel',stnames);

374

416 set(gcf, 'PaperPositionMode’, 'auto')
set(gcf, 'Position', [10,50,0.85%scrnsz(3),0.5%scrnsz(4)])
M8 print(’-dmeta', 'triangles_removel_effected_logarea_compare.emf')

420 DIFF(~INSIDE,:,:) = NaN;

422 2aghange in gradient magnitude upon removal of steel well
ciT;
424 DIFF2 = GRAD(1:npts,l:nst,1:2) - BASE; % not normalized
LEN = sqrt(DIFF2(1:npts,linst,1).A2 + DIFF2(1:npts,1l:nst,2).A2);
42 tmp = sum(LEN(mask),1)./count;
bar(l:nst,tmp, 'r');
428 tmp(sthull(:)) = 1.0;
bar(l:nst,tmp, 'b");
430 set(gca, 'Yscale’,'log")
hold on;
432 xlabel('removal of steel-cased well');
ylabel('\Delta in gradient magnitude from well removal', 'fontsize',13);
434 set(gcf, 'PaperType’, 'tabloid’
set(gca, 'XTickMode', 'manual');
436 set(gca, 'XTick',1:nst);
set(gca, 'XTickLabel', stnames);
438 set(gcf, 'PaperpPositionMode’, 'auto')
set(gcf, 'Position', [10,50,0.85%scrnsz(3),0.33*scrnsz(4)])
440 print(’'-dmeta', 'triangles_removel_gradmag_compare.emf')

442 2a$hange in mean gradient angle upon removal of steel well
clf:
444 angie = abs(atan2(DIFF2(1:npts,l:nst,2), DIFF2(1l:npts,l:nst,1)));
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tmp = sum(angle(mask),1)./count;

bar(l:nst,tmp,'r');

hold on;

tmp(sthul1(:))=0.0;

bar(l:nst,tmp,'b');

xlabel('removal of steel-cased well');

y1ab¢1ES|\De1ta in gradient direction| from well removal', 'fontsize',13);
v=axis(Q);

axis([v(1:2),0,pi])

set(gca, 'YTick',0:pi/4:pi);

set(gca, 'YTickLabel', '0]|45{90|135]/180");

set(gcf, 'PaperType’, 'tabloid')

set(gca, 'XTickMode', 'manual’);

set(gca, "XTick',1l:nst);

set(gca, 'XTickLabel', stnames);

set(gcf, 'PaperPositionMode’, 'auto’)

set(gcf, 'Position', [10,50,0.85%scrnsz(3),0.33*scrnsz(4)])
print('-dmeta', 'triangles_removel_gradang_compare.emf')

gradHsvimage = zeros(ny,nx,3);

% largest magnitude change seen in any figure (for consistent scaling)
maxmag = max(max(1oglO(sqrt(DIFF(:,:,1).A2 + DIFF(:,:,2).A2))));

figure(Q);
for i=l:nst

% easier to re-compute than save

X = [fiberwe11s(:,1);stee1we11s(1:i—1,1);stee1we11sgi+1:nst,1)];
y = [fiberwells(:,2);steelwells(1:i-1,2);steelwells(i+l:nst,2)];
% wells that make a convex hull for the dataset Jess one well
Tocalhull = convhull(x(:),y(:));

LOCINSIDE = inpolygon(X,Y,x(localhull),y(localhull));

c1fQ

mag = sqrt(reshape(DIFF(:,i,1).A2,ny,nx) + reshape(DIFF(:,1,2).A2,ny,nx));
rex = reshape(piFF(:,i,1),ny,nx);

rey = reshape(DIFF(:,i,2),ny,nx);

angle = abs(atan2(rey,rex));

% clear results outside the convex hull of the reduced dataset.
mag(~LOCINSIDE) = NaN;
angle(~LOCINSIDE) = NaN;

% map angle onto hue and loglO(magnitude) onto brightness (assume full
% saturation)

% data range: 0 <= theta <= +pi

blue = 0.6534; X% red is 1.0; scale range from bJue to red
gradHsvimage(:,:,1) = (1.0 - blue)*angle./pi + blue;
gradHsvimage(:,:,2:3) = 1.0; % full saturation / brightness

Togmag

10910(ma?);
minmag )

Togl0(to

% reset values Tower than tolerance to tolerance
Togmag(logmag < minmag) = minmag;
gradALPHA = (logmag - minmag)./(maxmag - minmag);

h = image(hsv2rgb(gradHsvimage));

set(h, 'xpata',x(1,:)); % assign coorinates to pixels to allow
set(h, 'YData',Y(:,1)); % overlays to be plotted over image
set(h, 'Alphabata’,gradALPHA); % make "no-change"” areas clear
axis xy % flip y-axis from image convention to plot convention

daspect([1,1,1]);
hold on;

title(stnames{i}, 'fontsize',15);
xlabel ('NAD27 UTM x Zone 13 [m]");
ylabel('NAD27 UTM y Zone 13 [m]');

tri = delaunay(x,y);
triplot(tri,x,y, " '-g', 'Linewidth',1/3);

hold on

plot(fiberwells(:,1),fiberwells(:,2), 'bs",
'‘Markersize',9, '"MarkerFaceColor’, 'b*);

plot([steelwells(1:i-1,1);steelwells(i+l:nst,)], ...
[steelwells(1:i-1,2);steelwells(i+1l:nst,2)], 'ro',
'Markersize', 9, '"MarkerFacecColor’, 'r');
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526 plot(steelwells(i,1),steelwells(i,2), ko',
'Linewidth’,2.5, '‘Markeredgecolor’', 'r', ...
528 'Markersize',14, 'MarkerFacecolor’, 'k");
530 p1ot(mar?in(:,1),mar?in(:,2),'—m','Linewidth',Z);
plot(noflow(:,1),nofTow(:,2),"'--k", 'Linewidth',2);
532 plot(wipp(:,1),wipp(:,2)," -k, '"Linewidth',2);
534 if strcmp(stnames{i}, 'H-2b2') || strcmp(stnames{i}, 'ERDA-9') || ...
strcmp(stnames{i}, '"H-3b2') || strcmp(stnames{i}, 'WiPP-19'
53 % for on-site wells, zoom in to WIPP LWB area
axis(nearwipp);
538 else
axis([xmin,xmax,ymin,ymax]);
540 end
set(gcf, 'PaperpPositionMode’, 'auto*)
542 set(gcf, 'PaperType', 'usletter')
set(gcf,'Position',th,50,(scrnsz(4)—120)*0.85,scrnsz(4)—120])
544 d print(’'-dmeta', ["triangles_grad_change_',stnames{i},'.emf']);
en
546

8.3.4. MATLAB script triangles remove two.m

The following MATLAB script computes and plots the triangle interior angle metric upon
removal of two steel wells from the well network.

clear
2 % This matlab script looks at the effects that removing one of the
% steel-cased (without replacement) would have on the estimation of the
4 % gradient, using linear interpolation across Delauny triangles as the
% estimator.

firstwell = {'wippP-25', 'wIPP-13', 'H-12','H-7b1'};
8 nfst = size(firstwell,2);

10 % Load data
addpath '..\common_programs\"';

% well datat (x,y, fwh,res,casing type)
14 wells = load('..\common_data\2007_well_data_for_triangles.dat');
names = textread('..\common_data\2007_wel1_names_for_triangles.dat"', ‘%s");

RHmask = wells(:,4) > -990; % exclude SNL-6 and SNL-15

18 wells = wells(RHmask, :);
names = names(RHmask,:);
20
margin load('..\common_data\composite_23_margin.dat');

22 noflow = Toad('..\common_data\no_flow_boundary.dat"');

totalbdry = load('..\common_data\total_boundary.dat");
24

% wells that make a convex hull around the dataset of all wells
26 hull = convhull(wells(:,1),wells(:,2));

28 steelwells = wells(wells(:,5)==1,1:3); X% Ffifth column indicates casing type
fiberwells = wells(wells(:,5)==0,1:3);
30 stnames =  {names{wells(:,5)==1}};

32 % wells on the hull that are also steel-cased

=1;
34 %or i=l:size(steelwells, 1)
for k=l:size(hull, 1)

36 if sqrt((steelwells(i,1) - wellsChull(k),1DIA2 + ...
(steelwells(i,2) - wellsChull(k),2))A2) < 1
38 sthul1(j) = i;
i=j+1;
4 end
end

42 end
4 xt=we11s(:,1§;

t=wells(:,2);
46 =wells(:,3);

nw = size(xt,1);
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nst = size(steelwells,1);
Q = zeros{nst+l,nfst,?2);
Q NaN;

stnames{nst+1} = 'BASE-CASE';

% calculation grid (not MODFLOW grid) i1s minimal grid which includes
% convex hull around data

xmin = min(xt); ymin = min(yt);

xmax = max(xt); ymax = max(yt);

dx = 100.0; dy = 100.0; X% note: using 100x100 is slow.
[X,Y] = meshgrid(xmin:dx:xmax, ymin:dy:ymax);

nx = size(X,2);

ny = size(Xx,1);

INSIDE = inpolygon(X,Y,totalbdry(:,1),totalbdry(:,2));
npts = numel(X);

% direction and magnitude of gradient in each cell, for
% scenario of removing each steel-casing well + base case

GRAD = ones(npts,nst+l,2);

% effects of removing one steel-casing well + base case for comparison
for mm=1:nfst
for jj=l:nst+l

% two steel wells must be different
if ~stremp(firstwell{mm}, stnames{jj})

if jj < nst+l
%’set of x,y,h without steel casing well jj or mm
[fiberwells(:,1);steelwells(~strcmp(stnames(1: nst),stnames{q
~strcmp(stnames(l:nst), firstwel imm}) 1)],

y = [fiberwells(:,2);steelwells(~strcmp(stnames{l:nst), stnames{qi
~strcmp(stnames(l:nst), firstwel mm}) 2)],
h = [fiberwells(:, 3);steelwells(~strcmp(stnames(l:nst),stnames{ qi
] ~strcmp(stnames(l:nst), firstwel mm}) 3)],
else
X = xt;
Lo
= t;

tri = delaunay(x,y);
nt = size(tri,1);

D = zeros(size(tri,1),1);

coeff = zeros(s1ze(tr1 1D,4);

grad = zeros(size(tri, 1) 2) % angle and magnitide of hydraulic gradient
geom = zeros(size(tri,1), 8), % 3 sides, 3 angles, area, # pts inside

A% compute equation for line through 3 points

% value of determinant used in denominator of Cramer’s rule

D(1:nt) = x(tri(:,1)).*y(tri(:,2)) + x(tri(:,2)). *y(tr1( 3)) + ...
yCeri(:, 1)) *x(tri(:,3)) — x(tri:,3)) . *y(tri(:,2)) - ...
xCtriC:, 1)) *yCeri:,3)) - XCtr1( ,2)) *y(eri(:, );

% a (coefficient on x)

coeff(lint,1) = Ch(tri(:,1)).*y(tri(:,2)) + y(tri(: 1)) *h(tr1( y3) + ...
h(tri(:,2)).*y(tri(:,3)) - hCtri(:,3)). *yCtri(:,
h{tri(:,2)) . *y(tri(:, 1)) - h(tri(:, D). *y(tri(: 3))) /D

% b (toeff7c7ent on y)

coeff(l:nt,2) = (xCtri(:,D).*h(tri(:,2)) + h(tri(: 1)) *x(tr1( ,3)) + ...
x(tri(:,2)).*h(tri(:,3)) - x(tri(:,3)).*h(tri(:,2)) -
x(tri(:,Z)).*h(tri(:,l)) - x(tri(:,1)).*h(tri(: 3))) /D

% ¢ (constant coefficient)
coeff(l:nt,3) = (xCtri(:,D)).*y(tri(: ,2)) *h(tr1( 3D + ...
y(tri(:, D). *h(tri(:,2)) . *x(tri(:,3))
x(tri(:,2)).*ygtri(:,3)).*h(tri(:, 1)) -
x(tri(:,3)).*y(tri(:,2)) . *h(tri(:,1)) -
x(tri(:,2)) . *y(tri(:, D). *h(tri(:,3)) - ...
x(triC:, D). *y(tri(:,3)).*h{tri(:,2)))./D;

% compute angle and magnitude of’hydrau77c grad7ent

gradgl nt, 1) = atan2(coeff(:,2), coeff( 13
grad(l:nt,2) = sqrt(sum(coeff( 1:12).A2,2 ),
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grad(l:nt,3) = max(h(tri(:,1:3)),[1,2) - minth(tri(:,1:3)),01,2);

% map results from "vector” triangles to "raster” grid

130

132 for kk=1:nt
% result is a 70g7ca7 vector, 7nd7cat7ng if the cell is in (T) or
134 % out (F) side this current trian

IN = reshape(inpolygon(X,Y,x(tri (Ek 1:3)),y(tri(kk,1:3))),npts,1);
136
% sum(IN) = number of cells inside the triangle

138 % ones(sum(IN)) *kk = column vector of the counter kk
% coeff(...,1:2) = x & y gradient repeated for every cell inside

140 % that triangle, copied to correct locations in GRAD
142 d GRAD(IN,jj,1:2) = coeff(ones(sum(IN),1)*kk,1:2);

en
144 %% calculate geometric things related to triangles

% lengths from Pythagorean theorem
146 % angles from cosine law

% area from Matlab built-in fcn

% length of side a (2->3)

150 geom(l:nt, l) = sqr‘t((x(tr‘1( v 3)) - x(tri(:,2))).A2 + ...
(y(tri( 27) - y tr1 12))).A2);
152 % length of 57
geom(l:nt,2) = sqr‘t((x(tm( 1)) = x(tri(:,3))).A2 + ...
154 G(triC:, D) - y(triC:, 39))AD;
% length of side ¢ (1->2)
156 geom(1l:nt,3) = sqrt((x(tri(: 2)) - x(rtri(:, D)) A2 + ...
5 Cy(eri(:,2)) - y(eri:,13)).A2);
160 % angle 1 between sides b & ¢ in radians
geom(1l:nt,4) = acos((sum(geom( 2:3).A2,2) - geom(:,1).A2)./ ...
162 (2. O*prod(geom( 3),2)0);,
% angle 2 between s7des a & ¢ in radians
164 geom(1l:nt,5) = acos((sum(geom( ,1:2:3).A2,2) - geom(:,2).A2)./ .
(2. O*prod(geom( 1:2: );
166 % angle 3 between sides b & a in radians
geom(l:nt,6) = acos((sum(geom( 1:2).A2,2) - geom(:,3).A2)./ ...
168 (2. O*pr‘od(geom( 1:2),2)));
170 % area of tr7ang7e - use MATLAB built-in function

geom(l:nt,7) = polyarea(x(tri(:,1:3)),y(tri(:,1:3)),2);
172

% compute goodness triangle criteria
174 ang_ratio = min(geom(:,4:6),[],2)./max(geom(:,4:6),[1,2);

176 % area-weighted angle ratio

Q(jj,mm,1) = sum(ang_ratio(:).*geom(:,7))/sum(geom(1l:nt,7));
178

% median triangle area

180 ] Q(jj,mm,2) = median(geom(l:nt,7));
else
182 Q(jj,mm,1:2) = NaN;
end
184 end
end

186

scrnsz = get(0, 'Screensize');
188

BASE = Q(ones(1,nst)*(nst+1),:,1:2);
190 plt = (Q(1: nst,..l 2) - BASE)./BASE;

192 figure()
hl = 1magesc(p1t(1 nst,:,1));
194 axis('image"')
Kcolormap(redwhitemap (reshape(plt(:,:,1),numel (pTt(:,:,1)))));
196 colorbar()
figure()
198 h2 = 1magesc(p1t(l nst,:,2));
axis('image"')
200 Kcolormap(redwhitemap (reshape(plt(:,:,2),numel(plt(:,:,2)))));
colorbar()

8.4. Model Parameter Correlation Maximization Scripts
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The first two scripts are run in Linux, then the following Python and R scripts are run in
Windows and are used to compute the correlation and partial correlation results used in the
analysis.

8.4.1. Bash shell script checkout_model_data.sh

The following Linux Bash shell script is run to check the Culebra MODFLOW model inputs and
results needed out from CVS, convert the binary head output files to ASCII, perform directory
manipulations and zip the results into a single file for transfer to Windows XP.

#!/bin/bash

# this Bash script is run in Linux and checks out the model files
# required to perform the model correlation analysis.

repo=/nfs/data/CvSLIB

# check out the 1ist of the final 100 fields used from AP-144
cvs -d ${repo}/MiningMod checkout Inputs/keepers

# move 1t into the current directory
mv Inputs/keepers .
rm -rf Inputs

# checkout model inputs from Tfields repository in cvs (AP-114 Task 7)
for d in "cat keepers'; do

# checkout transmissivity and anisotropy fields .
d cvs -d ${repo}/Tfields checkout outputs/${d}/modeled_{K,A}_field.mod
one

# modify the path of 'updated” T-fields, so they are all at the .
# same Tevel in the directory structure (to make these agree w/ mining mod repository)

if [ -a keepers_short ]; then
# delete any pre-existing files here,
# since file 7s concatenated to in next Joop
£ rm keepers_short
i

for d in "cat keepers’; do
bn="basename ${d}
# test whether it is a compound path
if [ ${d} != ${bn} ]; then
dn="dirname ${d}
mv ./outputs/${d}/ ./Outputs/

# put an empty file in the directory to 7ndicate
# what the directory was previously named
£ touch ./outputs/${bn}/${dn}
i

# create a keepers 1ist without directories
echo ${bn} >> keepers_short
done

# get output files from MiningMod CVS repository
for d in cat keepers_short ; do
# checkout particle tracking results (RO is no mining replicate)
cvs -d ${repo}/MiningMod checkout oOutputs/RO/${d}/dtrk.out
# checkout binary heads
cvs -d ${repo}/MiningMod checkout oOutputs/R0O/${d}/modeled_head.bin

# move files into existing directories
4 mv Outputs/RO/${d}/{dtrk.out,modeled_head.bin} outputs/${d}/
one

# remove intermediate directories
rm -rf Outputs/RO

rm -rf outputs/Update

rm -rf Outputs/Update2

# convert binary MODFLOW head output to ascii for use in AP-111 analysis
for d in "cat keepers_short ; do

Page 116 of 133



AP-111 Rev. 1 Monitoring Network Design Optimization

64 cd outputs/${d}
In -sf ../../head_bin2ascii.py .
66 python head bin2ascii.py
rm ./head_bin2ascii.py
68 rm ./modeled_head.bin
cd ../..
70 done

72 # zip results up for transfer to windowz
cd outputs

74 zip -r model_files.zip r???
mv model_files.zip ../

8.4.2. Python script head bin2ascii.py

The following Python script is run in Linux to convert the binary MODFLOW head output files
to ASCII format, for transfer to Windows XP for further analysis. This script is called by the
Bash shell script checkout_model_data. sh that checks the data out of CVS and does the
looping over the directories.

import struct
2 from sys import argv,exit

4 class FortranFile(file): . . nuw
""" modified from May 2007 Enthought-dev mailing list post by Neil Martinsen-Burrell

def __init__(self, fname, mode='r', buf=0):
8 file.__init__(self, fname, mode, buf)
self.ENDIAN = '<' # Jittle endian

10 self.di = 4 # default integer (could be 8 on 64-bit platforms)
12 def readRea]s(se1f prec="f"): o
"Read in an array of reals (default single precision) with error checking

14 # read header (Tength of recvruD

1 = struct. un ack(self.ENDIAN+"i",self.read(self.di))[0]
16 data_str = self.read(1)

len_real = struct calcsize(prec)
18 if 1 % len_real != 0:

raise I0Error('Error reading array of reals from data file')

20 num = 1/len_real

reals = struct.unpack(self.ENDIAN+str(num)+prec,data_str)
2 # check footer

if struct. unpack(se1f ENDIAN+'1',self.read(self.di))[0] != 1:
24 raise IOError('Error reading array of reals from data file’ )

return list(reals)
26
def readInts(se1f)

28 Read in an array of integers with error checking"""
1 = struct. un ack('1i ,se1f read(self.di))[0]
30 data_str = self.read(1)
Ten_int = struct calcsize('i')
32 if 1 % len_int != O:
raise IOError('Error reading array of integers from data file')
34 num = 1/len_int
ints = struct. unpack(str(num)+ 1 ',data_str)
36 if struct. unpack(se1f ENDIAN+'1',self. read(se1f di))[0] != 1:
raise IOError('Error reading array of integers from data file")
38 return Tist(ints)
40 def readRecord(se1f)
"""Read a single fortran record (potentially mixed reals and ints)"""
42 dat = self. read(se1f di)
if len(dat) ==
44 raise IOError( Empy record header')
1 = struct. unﬁ:ack(sehc ENDIAN+'i',dat)[0]
46 data_str = self.read(1)
if len(data_str) != 1:
48 raise IOError(’ pidn''t read enough data')
check = self.read(self.di)
50 if len(check) != 4:
raise IOError('Didn''t read enough data')
52 if struct. unpack(se]f ENDIAN+'3',check)[0] != 1:
raise IOError('Error reading record from data file' )
54 return data_str

Page 117 of 133




56
58
60

62

66
68
70
72
74
76
78
80

82

86
88
90
92
9
9%
9

100

102

104

106

108

10

12

AP-111 Rev. 1 Monitoring Network Design Optimization

def reshapev2m(v,nx,ny): .
"""Reshape a vector that was previously reshaped in C—major order from a matrix,
back into a C-major order matrix Chere a list of lists)."""

m = [Nonel*ny

n = nx*ny

for i,(1o,hi) in enumerate(zip(xrange(0, n-nx+1l, nx), xrange(nx, n+l, nx))):
m[i] = v[lo:hi]

return m

def floatmatsave(filehandle,m):
"""Writes array to open filehandle.
outer list is rows, inner lists are columns.

for row in m:
f.write(''.join([' %9.4f' % col for col in rowl]) + '\n")

# open file and set endian-ness

try:
infn,outfn = argv{1:3]

except: .
print '2 command-line arguments not given, using default in/out filenames'’
infn = 'modeled_head.bin

outfn = 'modeled_head.hed’
ff = FortranFile(infn)
# currently this assumes a single-layer MODFLOW model (or at least only one layer of output)

# format of MODFLOW header in binary layer array

fmt = '<2i2fl6s3i"

# little endian, 2 integers, 2 floats, .

# lé6-character string (4 element array of 4-byte strings), 3 integers

while True:
try:
# read in header
h = ff.readrecord()

except IOError:
# exit while loop
break

else:
# unpack header
kstp, kper, pertim,totim, text,ncol,nrow,ilay = struct.unpack(fmt,h)

# print status/confirmation to terminal .
print kstp,kper,pertim,totim,text,ncol,nrow,ilay

h = ff.readreals()
ff.close()
f = open(outfn, 'w')

floatmatsave(f, reshapev2m(h,ncol,nrow)[::-1]1)
f.close()

8.4.3. Python script 1oad_model data.py

The following Python script is not called by itself, but instead is used as a library in two other
Python scripts. This script loads the model input (transmissivity and anisotropy fields) and
model output (head) from each of the 100 calibrated MODFLOW realizations.

import numpy as np
from os.path import goin
from glob import glo

datadir = '../../../common_data/"'

fh = open(datadir + 'model_domain_specs.dat','r’

nx,ny = [int(x) for x in fh.readline().strip().sp1it(]

xmin,ymin = [float(x) for x in fh.read1ine().strip().sp1it(g

éﬂaxiyma?)= [float(x) for x in fh.readline().strip().split(
.close
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dt = np.float64 # "double precision”

# number of fields and elements in each

numf = 100
numel = nx*ny
ndata = 3
tcorr =

np. zerosg(ndata+1 ,humel),dtype=dt)

hcorr = np.zeros((ndata, numel), dtype dt)
trav = np.zeros((numf,), dtype~d )

dpi = 160

figsize = (14,6)

kdat = np.zeros((numf,numel),dtype=dt)
adat = np.zeros((numf,numel),dtype=dt)
hdat = np.zeros((numf,numel),dtype=dt)

# loop over all the d7rector7es, read input
for i,d in enumerate(glob('r???')):
pr1nt i,d
# x (?vuo 1og10 hydraulic condbct7v7t
kdat[i,:] = np.loadtxt(join(d, mode1ed _K_field.mod'),dtype=dt)
# logl0 ratio y/x (col/row) fbr conductivity
adatli,:] = np.loadtxt(join(d, 'modeled_A_field.mod'), dtype=dt)

# logl0 travel time to LwB 7is first column, last row
en(join(d, 'dtrk.out'), 'r"'
trav[1§ float(fn.readlines(Q [-1].split (O [0])

fn. c1ose()

# read 1n modflow head (saved 7n file as a matrix already)
hdat[i,:] = np.loadtxt(join(d, 'modeled_head.hed'),dtype= dt)[ :-1,:].reshape((numel,))

kdat = np.loglO(kdat)
adat = np.loglO(adat)
trav = np.logl0(trav)

hdat[hdat == -999] = np.NaN

tflat = trav.flatten()
kdat[kdat < -15] = np.NaN
keff = kdat + 0.5*adat

print m1n log effective k:',np.nanmin(keff)
print "'max log effective k:',np.nanmax(keff)

# define a mask that selects the WIPP LWB area + a buffer of cells around 7t
giggmask = np.zeros((307,284),dtype="bool') # false boolean array
uffer = 15

wippmask[121-buffer:185+buffer, 88-buffer:152+buffer] = True
wippmask.shape = (307%284,)

print 'successfully loaded model data'

8.4.4. Python script export pcor inputs.py

The following Python script calls the library 1oad_model data.py to read in the model data,
then exports the K ¢ and head data for an area surrounding the WIPP LWB for use in the
following R script that does the partial correlation analysis.

import numpy as np
from Toad_model data import *

# save large matrix: nrows = 100
# ncols = # elements (here (64 + (buffer * 2))**2 + 1 for travel time)

# save imported data for use in R
# for partial correlation analysis

# perform outer difference, then only use upper triangle of tensor
np.savetxt('keff_trav.dat’',

np. concatenate((keff[ ,wippmask],trav[:,None]),axis=1),
fmt="%.7f")
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np.savetxt('head_trav.dat’, .
np.concatenate((hdat[:,wippmask],trav[:,Nonel),axis=1),
fmt="%.7f")

print 'saved data for partial correlation analysis in R'

8.4.5. R script compute partial correlations.R

The following R script loads in the data exported by export _pcor inputs.py, computes the
partial correlation of K. and head in each cell to travel times and head to travel times,
accounting for the effects K¢ or head in all other cells.

# read in the matrix that has realizations as rows (100) and parameters as columns
# (k or h at model cells and travel time as last column)

k <- read.table('keff_trav.dat')
Tibrary(corpcor)

# this takes a lot of rRAM (> 2GB)
pc <- pcor.shrink(k)

# write all rows, last column to file (partial correlation of each k to travel time
# holding effects of all other k values constant)
write.table(pc[,dim(pc)[11], "kpc.out’', row.names=FALSE, col.names=FALSE)

h <- read.table(’'head_trav.dat')
pc <- pcor.shrink(h)

# write all rows, last column to file (partial correlation of each k to travel time
# holding effects of all other k values constant)
write.table(pc[,dim(pc)[1]], "hpc.out', row.names=FALSE, col.names=FALSE)

8.4.6. Python script spearman_rank coefficient.py

The following Python script computes correlation statistics between the results of the Culebra
model calibration (particle tracking times to the WIPP LWB) and the Culebra model input files,
creating plots of the results for the report.

import numpy as np

from os.path import goin

from glob import glo

import matplotlib

matplotlib.use('Agg’) # to improve memory usage
import matp1ot1ib.pyq1ot as plt

import matplotlib.colors as colors

# save code for Joading data in separate module
from load_model_data import *

def finish_fig(extents):
'*'Aadd common things to figures
plt.hold = True
plt.xlabel('uT™ NAD27 X [km]")
q1t.axis(extents)
ocs, labels = plt.xticks()
plt.xticks(locs, (1ocs/1000.0) .astype('[S3'))
q1t.y1abe1('UTM NAD27 Y [km]")
p

ocs,labels = plt.yticks()
1t.yticks(1ocs,(1ocs/1000.0).astyqe('ls4'),rotation=90)
plt.plot(wipp[:,0],wipp[:,11, 'k-", linewidth=1)
plt.plot(h2[:,0],h2[:,1], " 'g--", linewidth=2)
plt.plot(h3[:,0],h3[:,1],'r:", Tinewidth=2)
plt.plot(salado[:,0],salado[:,1], 'k: "', linewidth=2)
p1t.p1ot(we11s[fiberg,0],we11s[fiberg,l],'gs',markersizg=4)
plt.plot(wells[~fiberg,0],wells[~fiberg,1], 'ro',markersize=4)
plt.axis('image"’)

plt.axis(extents)

# Toad 7n partial-correlation data exported from R
pck = np.zeros((307%284,),dtype=dt)
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pch = np.zeros((307%284,),dtype=dt)

pch[wippmask]

np.loadtxt('hpc.out',dtype=dt)
pck[wippmask]

np.Tloadtxt('kpc.out',dtype=dt)

(307,284)
(307, 284)

pck.shape
pch.shape

print 'successfully loaded partial correlation data'

for n in xrange(numel):
if n % 10000 == O:
print n

travel time from C-2737 to WIPP LwB (global)
head at same cell as property (local)

X vs A/B

Yy vs A/B

# Teff vs A/B

#A VS B

R W®
wnivi R
hoh

datal = [kdat[:,n], kdat[:,n] + adat[:,n], kdat[:,n] + 0.5*adat[:,n]]
hflat = hdat[:,n].flatten()

for i,d in enumerate(datal):
dflat = d.flatten()
tcorr[i,n] np.corrcoef(df1at,tf1at)EO,l]
hcorr[i,n] np.corrcoef(dflat,hflat) [0,1]

np.corrcoef(hflat,tflat) [0,1]

mn

tcorr[ndata,n]

# blank out no-flow area
tcorr[np.isnan(kdat[0, :]) [None, :1]

np.NaN
hcorr[np.isnan(kdat[0, :]1) [None, :]1]

np.NaN

# clean up some temporary things
del datal
del hflat
del dflat

wipp = n?.1oadtxt(datadir+'wipﬁ_boundary.dat')

h2 = np.loadtxt(join(datadir, 'h2_200711.dat'),delimiter=",")

h3 = np.loadtxt(join(datadir, 'h3_200711.dat'),delimiter=",")

salado = np.1oadtxt(join(datadir,'mr? _dissolution.dat’),skiprows=5)
wells = np.loadtxt(datadir+'2007_well_data.dat')

fiberg = wells[:,4] == 0.0

# regional left, right, bottom, top
regext = (xmin,xmax,ymin,ymax)

# wipp area left, right,bottom, top
wippext = (wipp[:,0].min() - 1500.0, wipp[:,0].max() + 1500.0,
wipp[:,1].min() - 1500.0, wipp[:,1].max() + 1500.0)

cmap = colors.LinearSegmentedColormap.from_list('bwr',('blue', 'white', 'red'))
norml = colors.Normalize(vmin=-1,vmax=+1)

norm2 = colors.Normalize(vmin=-0.5,vmax=+0.5)

normsml = colors.Normalize(vmin=-0.015,vmax=+0.015)

normsm2 = colors.Normalize(vmin=-0.005, vmax=+0.005)

plt.figure(l)

plt.semilo ¥(10.0**trav,'k*')

p1t.x1abe1% realization')

p1t.y1abe1('¥ears travel time to WIPP LWB')
plt.savefig( travel_times.png"')
plt.close(l)

fmt = '%.5e"'
fn = ['_kx_",'_ky_ ', _keff_']
nn 'Ky, 'K {eff}']

C

# plot comparisons of partial and regular Keff correlation inside wIPP

plt.figure(l,figsize=figsize,dpi=dpi

plt.su ﬁ1ot(121g

plt.imshow(tcorr[2,:].reshape((ny,nx)),interpolation="nearest’,
cmaﬁ=cmap,norm=norm2,extent=regext)

plt.colorbar(shrink=0.8)

finish_fig(wippext)

p1t.tit1e%'corr. $K_{eff}$ w/ travel time')

p1t.subﬁ1ot(122)

plt.imshow(pck.reshape((ny,nx)),interpolation="'nearest’,
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cmaﬁ cmap, norm—normsmz extent=regext)
plt.colorbar(shrink=0

finish f1g(w1ppext)

plt.title(’ part1a1 corr. $x_{eff}$ w/ travel t1me )
plt. savef1g( Keff_partial_travel_time_corr.png’)
plt.close(l)

# plot comparisons of partial and regular head correlation inside wIPP
plt.figure(l, f1 size=figsize,dpi=dpi
plt.su E1Ot(1
plt.ims ow(tcorr[ndata :].reshape((ny,nx)),interpolation="nearest’,
E cmap, norm—normz extent= regext)
plt. co1orbar(s rink=0
finish_fi (w1ppexta
p1t.tit1e% corr. $h$ w/ travel time')
p1t.subﬁ1ot(122)
plt.imshow(pch.reshape((ny,nx)),interpolation="'nearest’,
cmaﬁ cmap, norm-normsml extent=regext)
plt.colorbar(shrink=0
finish_fig(wippext)
plt. t1t1e% part1a1 corr. $h$ w/ travel time’)
plt.savefig('h_partial_travel_time_corr.png')
plt.close(1)

# write results (reshaped into matrix form)
for j,f in enumerate(fn)
np.savetxt('corr'+f+'vs_time.dat’, tcorr[j,:].reshape((ny,nx)), fmt=Ffmt)

plt.figure(l,figsize=figsize,dpi=dpi)

plt.su E1Ot( g

plt.imshow(tcorr[j,:].reshape((ny,nx)),interpolation="nearest’,
cmap=cmap,norm=norm2, extent=regext)

finish f1g(regext)

plt.title('regional corr. $' + nn[j] + '$ w/ travel time')

plt.subplot(122)

plt.imshow(tcorr[j,:].reshape((ny,nx)),interpolation="'nearest’,
cmaﬁ cmap, norm-normz extent-regext)

plt.colorbar(shrink=0

finish f1g(w1ppext)

plt.title('WIPP corr. $' + nn[j] + '$ w/ trave1 time')

plt.savefig(f[1:] + 'travel_time_corr.png"')

plt.close(1l)

np.savetxt('corr'+f+'vs_head.dat', hcorr[j,:].reshape((ny,nx)), fmt=fmt)

p1t.f1gure(2 ,figsize=figsize,dpi=dpi)

plt.su E1ot(1 g

plt.imshow(hcorr[j,:].reshape((ny,nx)),interpolation="nearest',
cmap—cmap norm=norml, extent=regext)

finish_fig(regext)

plt. t1t1e% ‘regional corr. $' + nn[j] + '$ w/ head')

plt.subplot(122)

plt.imshowChcorr[j,:].reshape((ny,nx)),interpolation="'nearest’,
cmaﬁ cmap, norm—norml extent-regext)

plt.colorbar(shrink=0

finish_fig(wippext)

plt. t1t1e% 'WIPP corr. $' + nn[j] + '$ w/ head')

plt.savefig(f[1:] + 'heads_corr.png"')

plt.close(2)

np.savetxt('corr_head_vs_time.dat’', tcorr[ndata,:].reshape((ny,nx)), fmt=Ffmt)

p1t f1gure(4 figsize=figsize,dpi=dpi)
Tt.su E1ot(121§

p1t imshow(tcorr[ndata, :].reshape((ny,nx)),interpolation="nearest’
cmap=cmap, norm-normz extent-regext)

finish f1g(regext)

plt.title('regional corr. head w/ time')

plt.subplot(122)

plt.imshow(tcorr[ndata, :].reshape((ny,nx)),interpolation="'nearest',
cmaﬁ cmap, norm—normZ extent—regext)

plt.colorbar(shrink=0

finish f1g(w1ppext)

plt.title('wiPP corr. head w/ time')

plt.savefig('heads_vs_travel_time_corr.png')

plt.close(4)

# compute variance across all realizations for output and each parameter
print 'travel time to WIPP LWB:\tmean:%.8e\tstd:%.8e\n'
(trav.sum()/100.0,np.sqrt(np.var(trav)))
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data = [kdat kdat+adat kdat+0 5*adat]
196 dnam = E y_ "kef
dnnm = ['$\\1og_{10}(k_x", T$\\Tog_{10} (K_y', '$\\Tog_{10} (K_{eff}']
198
for j,(dat,nam) in enumerate(zip(data,dnam)):
200 std = np.sqrt(np. var(dat axis=0). reshape((ny,nx)))
std[std < 1.0E-10] = 0.0
202 mean = (dat. sum(ax1s 0)/100 0).reshape((ny,nx))
np.savetxt(nam+'var.out' ,std fmt=Ff mtg
204 q savetxt(nam+'mean.out’',mean, fmt=Ffmt)
plt.figure(3,figsize= f1gs1ze dp1—dp1)
206 plt.su E1ot( g
plt.imshow(mean,interpolation="nearest',extent=regext)
208 plt. co1orbar(shr1nk 0.8)
finish f1g(regext)
210 plt.title('mean ' + dnnm[j] + ")$")
plt.subplot(122)
212 plt.imshow(std, 1nterpo1at1on— nearest’',extent=regext, norm=colors.Normalize(vmin=0.0))
plt. co1orbar(shr1nk
214 finish_fi (re ext) .
plt.title('$\\log_ {10}$ standard deviation ' + dnnm[j] + ')$")
216 p1t.savef1g(nam + 'avg_std.png')
plt.close(3)

8.5. Combination of Three Methods Scripts

8.5.1. Python script combine plot methods.py

The following Python script combines the results of the three individual methods, plots the
figures in the text, and samples the results at steel-cased well locations to create the table in the
text.

import nump¥ as np
2 import matplotlib
matplotlib.use('Agg")
4 import matplotlib.pyplot as plt
import matplotlib.colors as colors
6 from os.path_import join
from itertools import chain

# weights used for recombination
10 w= (0.5,1.0,1.0)

12 def normalize_field(f):
"""pass a field with NaN in places outside active modflow region

14 fmin = np.nanmin(f)
fmax = np.nanmax(f)
16 return (f-fmin)/(fmax-fmin)

18 def normalize_triangle(f):
fmin = np.nanmin(f)

20 fmax = np.nanmax(f)
return f/(fmax-fmin)

def s pread field(fsm, factor=2):

22

2 map a field that is a subset of the 307x284 field onto the large field"""
flarge = np.empty((fsm.shape[0]*factor, fsm.shape[1]*factor),dtype=fsm.dtype)
26 for j,row in enumerate(fsmg
drow = 11st(cha1n(*[(x x) for x in rowl))
28 flarge[2*j,:] = drow
f1ar?e[2* +1 ] drow
0 return flargelO: 1

32 def finish f1g(extents)
'''add common things to figures'''®

34 plt.hold = True
plt.xTabel('UTM NAD27 X [km]')
3% ?1t .axis(extents)
ocs, labels = plt.xticks()
38 plt. xt1cks(1ocs (locs/1000. 0) astype('|s3'))
?1t .ylabel('UTM NAD27 Y [km]')
4 ocs, labels = plt.yticks()
plt. yt1cks(1ocs (locs/1000. 0) ast ?e( |s4'), rotation=90)
42 plt.plot(wipp[:,01, w1pp§ inewidth=1)
plt.plot(h2[:, ], 2[ g—- 11new1dth =2)
44 plt.plot(h3[:,0],h } 1], r: 1inew1dth=2)
p1t.p1ot(sa1ado[:,0 ,sa1ado[:,1],'b:',1inew1dth=2)
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p1t.p1ot(we11s[fiberg,0],we11s[fiberg,1],'gs',markersize=4)
plt.plot{wells[steel,0],wells[steel,1], 'ro",markersize=4)
plt.axis('image')

plt.axis(extents)

datadir = join('..",'common_data')

fh = open(join(datadir, 'model_domain_specs.dat'),'r')

nx,ny = [int(x) for x in fh.readline().strip().split()]

xmin,ymin = [float(x) for x in fh.readline().strip().sp1it()]

éﬂaxiyma?) [float(x) for x in fh.readline().strip().split()]
.close

wipp = nq.1oadtxt(join(datadir,'wipp_boundar .dat'))

h2 = np.loadtxt(join(datadir, 'h2_200711.dat'),delimiter=",")

h3_= np.loadtxt(join(datadir, 'h3_200711.dat'),delimiter=",")

salado = np.loadtxt(join(datadir, 'mrgn_dissolution.dat"), skiprows=5)
wells = np.loadtxt(join(datadir, '2007_well_data.dat'))

fhwn = open(join(datadir, '2007_well_data_with_names.dat'),'r') .

# names are last column of each row, but not includinﬁ 2 wells in CH region
steel_well_names = [x.rstrip().split(Q[-1] for x in fhwn if x.split(Q[-2] == '1']
fhwn.close()

fiberg = wells[:,4] == 0.0
steel = wells[:,4] == 1.0

wellij = np.zeros((steel.sum(),2), int")
we1113[:,0§ = np.f1oorg(we11s[stee1,0] - xmin)/100.0)
wellij[:,1] = np.floor((ymin - wells[steel,1])/100.0)

# regional left,right, bottom, top
regext = (xmin,xmax,ymin,ymax)

# wipp area left, right, bottom, top
wippext = (wipp[:,0].min() - 1500.0, wipp[:,0].max() + 1500.0,
wipp[:,1].min() - 1500.0, wipp[:,1].max() + 1500.0)

fs = (18,9)
# read in mean/medain kriging + 1 results

# these are on a mesh with 1/4 as many elements (1/2 as many in each direction)
# and therefore must be mapped onto the MODFLOW grid

kmean = np.loadtxt(join('..", 'kriging_add_wel1’, 'addone_mod_results_mean.dat"'))
kmedian = np.Tloadtxt(join('..', 'kriging_add_well"', 'addone_mod_results_median.dat'))
kmean [kmean==1] = np.NaN # blank out areas outside MODFLOW active areas
kmedian[kmedian==1] = np.NaN

nkmean = normalize_field(kmean)
nkmedian = normalize_field(kmedian)

kmean = spread_field(kmean) [::-1,:]
kmedian = spread_field(kmedian)[::-1,:]

nkmean = spread_field(nkmean)[::-1,:1 # flip wrt y
nkmedian = spread_field(nkmedian)[::-1,:]

# read in the results of the add-one analysis for triangles

tmean = np.loadtxt(join('..', 'triangle_add_well', 'triangles_add_one_mean.dat'))
tmedian = np.loadtxt(join('..", 'triangle_add_well"', 'triangles_add_one_median.dat'))
tmean[tmean==-999] = np.NaN # blank out areas outside MODFLOW active areas

tmedian[tmedian==-999] = np.NaN

ntmean = normalize_triangle(tmean)[::-1,:]
ntmedian = normalize_triangle(tmedian)[::-1,:]

# read 1n correlation results (handling the NaN in the file)
fhk = open(join('..', 'model_correlation’, 'CRA2009_model’,
e 0 'final_100_fields', 'corr_keff_vs_time.dat'),'r")

for 1ine 1in fhk:
k1.append([float(x) for x in
Tine.strip().replace('1.#QNANe+00', '-999').sp1it()])
fhk.close()

kcorr = np.array(kl)
del k1

fhh = open(join('..', 'model_correlation’, 'CRA2009_model’,
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h ] 'final_100_f1ields’, 'corr_head_vs_time.dat'),’'r’)
for 1ine in fhh:
h1.append([float(x) for x in .
Tine.strip().replace('1.#QNANe+00", '-999') .replace(’-1.#INDOe+00', '1.0E-

16').splitOD)

ﬁhh .close() 1

corr = np.arra
del hl P Y

# set -999 substituted above back to NaN
kcorr[kcorr==-999]=np.NaN
kcorr[np.isnan(tmean[::-1,:]1)]=np.NaN
hcorr[hcorr==-999]=np.NaN
hcorrlnp.isnan(tmean[::-1,:])]=np.NaN

nkcorr
nhcorr

normalize_field(np. abs(kcorr); # should already be fI1ipped
normalize_field(np.abs(hcorr)

Pl g

# c?mpute the remove-one analysis for correlation results from sampling-based correlation
analysis

fh = open('corr_remove_one_steel.dat', 'w")

fhowrite('\t'. ﬂo1n(stee1 _well_names) + "\ L.

np.savetxt(fh, corrEwe111 E ] swellij ]] None,:],fmt="%.6e',delimiter="\t")

2 s?vet§§(fh shcorrlwellij we111J[ .0 None,:],fmt="'%.6e",delimiter="\t")
.close

# plot up histograms of distribution in each field
g1t f1gure(1 figsize=(12.5,10))
ins =

plt.subplot(321)

plt. h1st(nkmean[~np 1snan(nkmean)] flatten(),bins=bins)
plt.ylabel ("' frequency )

plt. x1abe1(r scaled mean $\Delta$ kriging var.')
plt.axis('tight')

plt.subplot(322)

plt. h1st(nkmed1an[~np isnan(nkmedian)].flatten(),bins=bins)
plt. x1abe1(r scaled median $\Delta$ kr1g1ng var.')
plt.axis('tight')

plt.subplot(323)

plt. h1st(ntmean[~np 1snan(ntmean)] flatten(),bins=bins)
plt.ylabel (" frequency )

plt. x1abe1(r scaled mean $\Delta$ triangle angle raio')
plt.axis('tight')

plt.subplot(324)

plt. h1st(ntmed1an[~np isnan(ntmedian)].flatten(),bins= b1ns)
plt. x1abe1(r scaled median $\Delta$ triangle ang1e raio')
plt.axis('tight’)

plt.subplot(325)

plt. h1st(nkcorr[~np 1snan(nkcorr)] flatten(),bins=bins)
plt.ylabel ("' frequenc D)

plt. x1abe1(r scaled $\rho$ $K_{eff}$ vs. $t$")
plt.axis('tight')

plt.subplot(326)

plt. h1st(nhcorr[~np isnan(nhcorr)]. f1atten() bins=bins)
plt. x1abe1(r scaled $\rho$ head vs. $t$')
plt.axis('tight’)

plt.subplots_adjust(hspace=0.3)
plt.savefig('histograms_of_ distributions. png')
plt.close(1)

# plot up histograms of original (unscaled) distribution in each field
g1t f1gure(1 figsize=(12.5,10))
ins =

plt.subplot(321)

plt. h1st(kmean[~np isnan(kmean)].flatten(),bins=bins)
plt.axis('tight’)

plt.ylabel('frequency')

plt.xlabel(r'unscaled mean $\Delta$ kriging var.')

plt.subplot(322)
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plt.hist(kmedian[~np.isnan(kmedian)].flatten(),bins=bins)

plt.axis(’
plt.xlabel

plt.subplo
plt.hist(t
plt.axis(’
plt.ylabel
plt.xlabel

plt.subplo
plt.hist(t
plt.axis(’

plt.xlabel(r'unscaled median $\Delta$ triangle angle raio')

plt.subplo
plt.hist(k
plt.axis(’
plt.ylabel
plt.xlabel

plt.subplo
p1t.histgh
plt.axis

plt.xlabel

plt.subplo
plt.savefi
plt.close(

cmap = colors.LinearsegmentedColormap.from_list('rwg’',('red’, 'orange', 'white’, 'blue’, 'purple'))

tight')
(r'unscaled median $\Delta$ kriging var.')

t(323)
mean[~np.isnan(tmean)].flatten(),bins=bins)
tight')

E' requency’)

r‘unscaled mean $\Delta$ triangle angle raio')

t(324)
mgd;an§~np.isnan(tmedian)].f1atten(),bins=bins)
tight'

t(325)
corr~np.isnan(kcorr)].flatten(),bins=bins)
tight')

('frequency')

(r'unscaled $\rho$ $k_{eff}$ vs. $t$")

1(326)
corr[~np.isnanChcorr)].flatten(),bins=bins)

‘tight')

(r

ts_adjust(hspace=0.3)
g('histograms_of_original_distributions.png')

Y]

unscaled $\rho$ head vs. $t$')

nrm = colors.Normalize(vmin=-2.4,vmax=2.4)

#cmap = 'y
out = np.z

et'’
eros((307,284,4))

## combine results linearly with multipliers
# mean and median + keff and head = 4 results
plt.figure(l)

gout[:,:,0] = np.sqrt((wl[0]*nkcorr)**2 + (w[1]*nkmean)**2 + (w[2]*ntmean)**2)

out[:,:,0]

= w[0]*nkcorr + w[l]l*nkmean + w[2]*ntmean

Monitoring Network Design Optimization

plt.imshow(out[:,:,0],interpolation="nearest’,extent=regext,cmap=cmap,norm=nrm)

cb = plt.c
cb.set_lab
plt.title(
finish_fi

plt.savefi
plt.close(

plt.figure

olorbar(shrink=0.8)

el1("$s_c$")

'$K_{eff} +$ mean’)

(regext)
g('combined_results_map_Keff_mean.png")

Y]
ey

gout[:,:,1] = np.sqre((w[O]*nhcorr)**2 + (w[1]*nkmean)**2 + (w[2]*ntmean)**2)

out[:,:,1] = w[0]*nhcorr + w[1l]*nkmean + w[2]*ntmean
plt.imshow(out[:,:,1],interpolation="nearest’,extent=regext,cmap=cmap,norm=nrm)
cb = plt.colorbar(shrink=0.8)

cb.set_label("$s_c$")

plt.title('$h +$ mean' )

finish_fig(regext)

plt.savefig('combined_results_map_h_mean.png’)

plt.close(1)

plt.figure(l)

gout[:,:,2] = np.sqre((w[0]*nkcorr)**2 + (w[1]*nkmedian)**2 + (w[2]*ntmedian)**2)

out[:,:,2] = w[0]*nkcorr + w[1l]*nkmedian + w[2]*ntmedian
plt.imshow(out[:,:,2],interpolation="nearest’,extent=regext,cmap=cmap,norm=nrm)
cb = plt.colorbar(shrink=0.8)

cb.set_label('$s_c$")

plt.title('$K_{eff} +$ median' )

finish_fig(regext)

plt.savefig('combined_results_map_Keff_median.png"')

plt.close(l)

plt.figure(l)

#out[:,:,3] = np.sqre((wl[0]*nhcorr)**2 + (w[1]*nkmedian)=**2 + (w[2]*ntmedian)**2)

out[:,:,3] = w[0]*nhcorr + w[l]l*nkmedian + w[2]*ntmedian
plt.imshow(out[:,:,3],interpolation="nearest’, extent=regext,cmap=cmap,norm=nrm)
cb = plt.colorbar(shrink=0.8)

cb.set_label('$s5_c$")

plt.title('$h +$ median' )

finish_fig(regext)

plt.savefi

plt.close(

g('combined_resu]ts_map_h_median.png')
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# save table of results at steel-cased wells
fth = open('composite_remove_one_steel.dat’, 'w"')

fh.write('\t'.goin(stee1_we11_names) + '\n")
for j in [0,1,2,3]: .

np.savetxt(fh,out[wellij[:,1],wel1ij[:,0],j][None,:],fmt="%.6e’',delimiter="\t")
fth.close()
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